Delaunay三角网 alpha shape 2D点集边缘线提取
程序员文章站
2024-01-02 21:40:58
Delaunay三角网 alpha shape 2D点集边缘线提取Delaunay三角网参考blog:Scipy笔记[Geometry] Alpha Shapes - 原理及我的实现Alpha ShapeWidyaningrum E , Peters R Y , Lindenbergh R C . Building outline extraction from als point clouds using medial axis transform descriptors[J]. Patt...
Delaunay三角网 alpha shape 2D点集边缘线提取
-
Delaunay三角网
参考blog:
Scipy
笔记
[Geometry] Alpha Shapes - 原理及我的实现 -
Alpha Shape
Widyaningrum E , Peters R Y , Lindenbergh R C . Building outline extraction from als point clouds using medial axis transform descriptors[J]. Pattern Recognition, 2020:107447.
- Codes
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial import Delaunay
from sklearn.neighbors import KDTree
def plot_circle(centers,rs,ax):
N = centers.shape[0]
for i in range(N):
theta = np.arange(0, 2*np.pi, 0.01)
x = centers[i,0] + rs[i] * np.cos(theta)
y = centers[i,1] + rs[i] * np.sin(theta)
ax.plot(x, y, 'b-', alpha=0.1)
def edge_check_vaild(e,tree,r,err):
xp = e[0]
xq = e[1]
L = np.sqrt(np.dot(xq-xp,xq-xp))
if L > 2*r:
return False, -1
vec = (xq-xp)/L # the vector from p to q
normal = np.array([vec[1],-vec[0]])
c1 = (xp + xq) / 2 + normal * np.sqrt(r**2-(L/2)**2)
c2 = (xp + xq) / 2 - normal * np.sqrt(r**2-(L/2)**2)
c = np.array([c1,c2])
count = tree.query_radius(c,r=r+err,return_distance=False,count_only=True,sort_results=False)
if count[0]<=2:
return True, c[0]
elif count[1]<=2:
return True, c[1]
else:
return False, -1
def boundary_extract(points,alpha,err=10e-3):
"""
Here, parameter err was place, because there are errors when calculating distance
meanwhile, this err was different for different scaling 2D point cloud
so, a parameter was placed here to considering the calculation errors
"""
R = 1 / alpha
pts = np.copy(points)
tree = KDTree(pts, leaf_size=2)
tri = Delaunay(pts)
s = tri.simplices
N = s.shape[0]
i = 0
edges = []
centers = []
while i <= N - 1:
if s[i,0]==-1:
i = i + 1
continue
p3 = s[i]
e1 = np.array([points[p3[0],:],points[p3[1],:]])
e2 = np.array([points[p3[1],:],points[p3[2],:]])
e3 = np.array([points[p3[0],:],points[p3[2],:]])
e = [e1,e2,e3]
for j in range(3):
flag, center = edge_check_vaild(e[j],tree,R,err)
if flag:
edges.append(e[j])
centers.append(center)
nb = tri.neighbors[i]
nb_valid = nb[nb!=-1]
#nb_valid_num = nb_valid.shape[0]
#s[nb_valid] = -1
i = i + 1
return edges, centers
def show_edge(edges,points,circle=None,r=None):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(*zip(*points),s=4,c='k')
for i in range(len(edges)):
ax.plot(*zip(*edges[i]),'-r')
if circle is not None:
plot_circle(circle,r,ax)
plt.show()
if __name__ == "__main__":
pts = np.random.rand(200, 2) # 随机生成10个2维点
alpha = 6
edges, centers = boundary_extract(pts,alpha,err=10e-5)
show_edge(edges,pts,circle=np.array(centers),r=np.ones(len(centers))/alpha)
print("over!!!")
-
Results
本文地址:https://blog.csdn.net/Subtlechange/article/details/110674800