欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

scikit实现机器学习常用模型

程序员文章站 2024-01-01 11:04:10
1.线性模型import matplotlib.pyplot as pltimport numpy as npfrom sklearn import linear_modelx = np.linspace(-3,3,30);y = 2 * x + 1plt.scatter(x,y)plt.show()X = x + np.random.rand(30)print("X",len(X))print("Y",len(y))plt.scatter(X,y)# plt.show()....

 使用scikit库实现了几种常见的机器学习分类算法。

1.线性模型

import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
x = np.linspace(-3,3,30);
y = 2 * x + 1
plt.scatter(x,y)
plt.show()

X = x + np.random.rand(30)
print("X",len(X))
print("Y",len(y))
plt.scatter(X,y)
# plt.show()

model = linear_model.LinearRegression()
print("X",len(X))
print("Y",len(y))
print("type X", type(X))
x_tran = [[i] for i in X]
y_train = [[i] for i in y]
model.fit(x_tran,y_train)
print(model.coef_)
print(model.intercept_)
y_ = x*model.coef_ [0]+ model.intercept_
plt.plot(x, y_)
plt.show()

2 logistic回归

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
print("X",X)
print("X len", len(X))
print("y",y)
print("y len",len(y))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = LogisticRegression().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))

3 KNN分类算法

from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = KNeighborsClassifier().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))

4 朴素贝叶斯算法

from sklearn.naive_bayes import MultinomialNB
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = MultinomialNB().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))

5 决策树分类算法

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = DecisionTreeClassifier().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))

6支持向量机

from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = SVC().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))
print(clf.kernel)

7  Kmeans聚类算法

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
n_samples = 1500
X,y =  make_blobs(n_samples = n_samples)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()

y_pred = KMeans(n_clusters = 3).fit_predict(X)
plt.scatter(X[:,0],X[:,1],c=y_pred)
plt.show()


8 神经网络分类算法

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = MLPClassifier().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.score(X_test,y_test))

9 随机森林分类算法

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X,y = load_iris(return_X_y = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
clf = RandomForestClassifier().fit(X_train,y_train)
print(clf.predict(X_test))
print(clf.estimators_)
print(clf.score(X_test,y_test))

 

 

本文地址:https://blog.csdn.net/u012410628/article/details/107893000

上一篇:

下一篇: