欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

The “freeze_support()“ line can be omitted if the program is not going to be frozen to produ

程序员文章站 2024-01-01 09:52:22
...

这是在pytorch官网60分钟学习时遇到的一个问题,训练图像分类器中,一开始要下载训练集和测试集,其中下载代码如下

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)                                    

在训练的时候download都设置为True,因为我们要下载,但是在下载完之后要打开图片,就需要改为False,并且,还应该把训练图像的代码放入下方中,这样才可以正常运行

if __name__ == '__main__':

完整代码如下:

# Training an image classifier训练图像分类器
# 1. Loading and normalizing CIFAR10加载并标准化CIFAR10
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np


# If running on Windows and you get a BrokenPipeError, try setting the num_worker of torch.utils.data.DataLoader() to 0.
# 如果在Windows上运行时遇到BrokenPipeError,请尝试设置torch.utils.data.DataLoader()为0。


# 下载训练集和测试集
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

if __name__ == '__main__':

    # functions to show an image
    def imshow(img):
        img = img / 2 + 0.5     # unnormalize
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
        plt.show()


    # get some random training images
    dataiter = iter(trainloader)
    images, labels = dataiter.next()

    # show images
    imshow(torchvision.utils.make_grid(images))
    # print labels
    print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

上一篇:

下一篇: