欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

四、pix2pixHD代码解析(models搭建)

程序员文章站 2023-12-31 17:40:22
...

pix2pixHD代码解析

一、pix2pixHD代码解析(train.py + test.py)
二、pix2pixHD代码解析(options设置)
三、pix2pixHD代码解析(dataset处理)
四、pix2pixHD代码解析(models搭建)

四、pix2pixHD代码解析(models搭建)

models.py

import torch


# 创建模型,并返回模型
def create_model(opt):
    if opt.model == 'pix2pixHD':                                        # 选择pix2pixHD model
        from .pix2pixHD_model import Pix2PixHDModel, InferenceModel
        if opt.isTrain:                                                 # 若是训练,则为True
            model = Pix2PixHDModel()
        else:                                                           # 否则,若仅仅是前向传播用来演示,则为False
            model = InferenceModel()
    else:                                                               # 选择 UIModel model
    	from .ui_model import UIModel
    	model = UIModel()
    model.initialize(opt)                                               # 模型初始化参数
    if opt.verbose:                                                     # 默认为false,表示之前并无模型保存
        print("model [%s] was created" % (model.name()))                # 打印label2city模型被创建

    if opt.isTrain and len(opt.gpu_ids) and not opt.fp16:
        model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)    # 多GPU训练

    return model

pix2pixHD.py

import numpy as np
import torch
import os
from torch.autograd import Variable
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks


################################################################################################
# 看到Pix2PixHDModel的类。这个类的内容非常多,有搭建模型,定义优化器和损失函数,导入模型等操作。
################################################################################################
class Pix2PixHDModel(BaseModel):                                                                                        # 继承自BaseModel类,里面主要有save和load模型函数
    def name(self):
        return 'Pix2PixHDModel'

    # loss滤波器:其中g_gan、d_real、d_fake三个loss值是肯定返回的
    # 至于g_gan_feat,g_vgg两个loss值根据train_options的opt.no_ganFeat_loss, not opt.no_vgg_loss而定
    # 备注:这个函数只是一个滤波器,不仅可以滤掉loss值,也可以滤掉loss name,主要看是谁在调用,输入什么,就可以滤掉什么。
    def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss):
        flags = (True, use_gan_feat_loss, use_vgg_loss, True, True)

        def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake):
            ### zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
            # 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。
            # >>>a = [1,2,3]
            # >>> b = [4,5,6]
            # >>> c = [4,5,6,7,8]
            # >>> zipped = zip(a,b)     # 打包为元组的列表
            # [(1, 4), (2, 5), (3, 6)]
            # >>> zip(a,c)              # 元素个数与最短的列表一致
            # [(1, 4), (2, 5), (3, 6)]
            # >>> zip(*zipped)          # 与 zip 相反,*zipped 可理解为解压,返回二维矩阵式
            # [(1, 2, 3), (4, 5, 6)]
            return [l for (l, f) in zip((g_gan, g_gan_feat, g_vgg, d_real, d_fake), flags) if f]                        # 当f为True时,返回对应的l,其中l表示loss值
        return loss_filter                                                                                              # 最后返回的是**的loss值,False的loss值并不记录在内

    # 在initialize函数里面看看对Pix2PixHDModel的一些设置。
    def initialize(self, opt):
        BaseModel.initialize(self, opt)
        if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM
            torch.backends.cudnn.benchmark = True
        self.isTrain = opt.isTrain
        self.use_features = opt.instance_feat or opt.label_feat
        self.gen_features = self.use_features and not self.opt.load_features
        input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc                                                  # 因为label_n=0,因此赋值为3

        ##### define networks
        # Generator network
        netG_input_nc = input_nc                                                                                        # 输入层数
        if not opt.no_instance:                                                                                         # 如果有实例标签,则通道加1
            netG_input_nc += 1
        if self.use_features:
            netG_input_nc += opt.feat_num                  
        self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG,                                  # 创建全局生成网络
                                      opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, 
                                      opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)        

        # Discriminator network
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            netD_input_nc = input_nc + opt.output_nc
            if not opt.no_instance:
                netD_input_nc += 1
            self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt.norm, use_sigmoid, 
                                          opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids)                     # train_options里设置了opt.num_D=2

        ### Encoder network
        if self.gen_features:
            self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder', 
                                          opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids)  
        if self.opt.verbose:
                print('---------- Networks initialized -------------')

        # load networks
        if not self.isTrain or opt.continue_train or opt.load_pretrain:
            pretrained_path = '' if not self.isTrain else opt.load_pretrain
            self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)            
            if self.isTrain:
                self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path)  
            if self.gen_features:
                self.load_network(self.netE, 'E', opt.which_epoch, pretrained_path)              

        # set loss functions and optimizers
        if self.isTrain:
            if opt.pool_size > 0 and (len(self.gpu_ids)) > 1:
                raise NotImplementedError("Fake Pool Not Implemented for MultiGPU")
            self.fake_pool = ImagePool(opt.pool_size)
            self.old_lr = opt.lr

            # define loss functions
            self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss)
            
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)                        # 训练G和D的损失函数定义
            self.criterionFeat = torch.nn.L1Loss()                                                                      # feature matching损失项的定义,使用的是L1 loss。
            if not opt.no_vgg_loss:             
                self.criterionVGG = networks.VGGLoss(self.gpu_ids)                                                      # percetual loss的定义。这是可选项,对最终结果也有帮助。
                
        
            # Names so we can breakout loss
            self.loss_names = self.loss_filter('G_GAN','G_GAN_Feat','G_VGG','D_real', 'D_fake')                         # 利用loss滤波器返回有用的loss名字

            # initialize optimizers
            # optimizer G
            if opt.niter_fix_global > 0:                
                import sys
                if sys.version_info >= (3,0):
                    finetune_list = set()
                else:
                    from sets import Set
                    finetune_list = Set()

                params_dict = dict(self.netG.named_parameters())
                params = []
                for key, value in params_dict.items():       
                    if key.startswith('model' + str(opt.n_local_enhancers)):                    
                        params += [value]
                        finetune_list.add(key.split('.')[0])  
                print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
                print('The layers that are finetuned are ', sorted(finetune_list))                         
            else:
                params = list(self.netG.parameters())
            if self.gen_features:              
                params += list(self.netE.parameters())         
            self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))                            

            # optimizer D                        
            params = list(self.netD.parameters())    
            self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))

    def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):             
        # 1、label_map 数据类型转化
        if self.opt.label_nc == 0:                                                                                      # 如果label通道为0,那么直接转为cuda张量
            input_label = label_map.data.cuda()
        else:                                                                                                           # 否则为标签图创建onehot的label映射
            # create one-hot vector for label map 
            size = label_map.size()
            oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])                                                # size[0]为类别数量;size[2], size[3]为标签尺寸
            input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
            input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
            if self.opt.data_type == 16:                                                                                # 源代码数据集的label是16位的
                input_label = input_label.half()                                                                        # 数据类型转化

        # 2、get edges from instance map
        if not self.opt.no_instance:
            inst_map = inst_map.data.cuda()
            edge_map = self.get_edges(inst_map)                                                                         # 获取边缘
            input_label = torch.cat((input_label, edge_map), dim=1)                                                     # torch.cat是将两个张量(tensor)拼接在一起,cat是concatnate的意思,即拼接,联系在一起。
        input_label = Variable(input_label, volatile=infer)

        # 3、real images for training
        if real_image is not None:
            real_image = Variable(real_image.data.cuda())

        # 4、instance map for feature encoding
        if self.use_features:
            # get precomputed feature maps
            if self.opt.load_features:
                feat_map = Variable(feat_map.data.cuda())
            if self.opt.label_feat:
                inst_map = label_map.cuda()

        return input_label, inst_map, real_image, feat_map

    # 定义判别器
    def discriminate(self, input_label, test_image, use_pool=False):
        input_concat = torch.cat((input_label, test_image.detach()), dim=1)
        if use_pool:            
            fake_query = self.fake_pool.query(input_concat)
            return self.netD.forward(fake_query)
        else:
            return self.netD.forward(input_concat)

    def forward(self, label, inst, image, feat, infer=False):                                                           # Pix2PixHDModel()默认调用forward()函数
        # 1、Encode Inputs是model.forward的第一句,目的是做一下预处理,得到one hot编码
        # 同时将instance map转换为edge,转换方法是对比四领域之间的差异,和论文方法一致。
        input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat)  

        # 2、Fake Generation                                                                                            # 生成假图
        if self.use_features:
            if not self.opt.load_features:
                feat_map = self.netE.forward(real_image, inst_map)                     
            input_concat = torch.cat((input_label, feat_map), dim=1)                        
        else:
            input_concat = input_label
        fake_image = self.netG.forward(input_concat)

        # 3、Fake Detection and Loss                                                                                    # 输入标签图和假图,计算loss值
        pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True)
        loss_D_fake = self.criterionGAN(pred_fake_pool, False)                                                          # 返回损失函数

        # 4、Real Detection and Loss                                                                                    # 输入标签图和真图,计算loss值
        pred_real = self.discriminate(input_label, real_image)
        loss_D_real = self.criterionGAN(pred_real, True)
        # G和D的损失,G的损失只有一项,就是loss_G_GAN ,D的损失有两项,loss_D_real 和loss_D_fake 。

        # 5、GAN loss (Fake Passability Loss)                                                                           #
        pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1))        
        loss_G_GAN = self.criterionGAN(pred_fake, True)               

        # feature matching的损失的计算方式,就是计算相同的位置上,假样本和真样本的特征的L1距离。
        # GAN feature matching loss
        loss_G_GAN_Feat = 0
        if not self.opt.no_ganFeat_loss:
            feat_weights = 4.0 / (self.opt.n_layers_D + 1)
            D_weights = 1.0 / self.opt.num_D
            for i in range(self.opt.num_D):
                for j in range(len(pred_fake[i])-1):
                    # 计算公式
                    loss_G_GAN_Feat += D_weights * feat_weights * \
                        self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat
                   
        # VGG feature matching loss
        loss_G_VGG = 0
        if not self.opt.no_vgg_loss:
            loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat
        
        # Only return the fake_B image if necessary to save BW
        return [self.loss_filter(loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake), None if not infer else fake_image]   # 返回loss值以及假图片,因为train函数里赋值infer=save_fake

    # 前向推理
    def inference(self, label, inst, image=None):
        # Encode Inputs        
        image = Variable(image) if image is not None else None
        input_label, inst_map, real_image, _ = self.encode_input(Variable(label), Variable(inst), image, infer=True)

        # Fake Generation
        if self.use_features:
            if self.opt.use_encoded_image:
                # encode the real image to get feature map
                feat_map = self.netE.forward(real_image, inst_map)
            else:
                # sample clusters from precomputed features             
                feat_map = self.sample_features(inst_map)
            input_concat = torch.cat((input_label, feat_map), dim=1)                        
        else:
            input_concat = input_label        
           
        if torch.__version__.startswith('0.4'):
            with torch.no_grad():
                fake_image = self.netG.forward(input_concat)
        else:
            fake_image = self.netG.forward(input_concat)
        return fake_image

    def sample_features(self, inst): 
        # read precomputed feature clusters 
        cluster_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, self.opt.cluster_path)        
        features_clustered = np.load(cluster_path, encoding='latin1').item()

        # randomly sample from the feature clusters
        inst_np = inst.cpu().numpy().astype(int)                                      
        feat_map = self.Tensor(inst.size()[0], self.opt.feat_num, inst.size()[2], inst.size()[3])
        for i in np.unique(inst_np):    
            label = i if i < 1000 else i//1000
            if label in features_clustered:
                feat = features_clustered[label]
                cluster_idx = np.random.randint(0, feat.shape[0]) 
                                            
                idx = (inst == int(i)).nonzero()
                for k in range(self.opt.feat_num):                                    
                    feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
        if self.opt.data_type==16:
            feat_map = feat_map.half()
        return feat_map

    def encode_features(self, image, inst):
        image = Variable(image.cuda(), volatile=True)
        feat_num = self.opt.feat_num
        h, w = inst.size()[2], inst.size()[3]
        block_num = 32
        feat_map = self.netE.forward(image, inst.cuda())
        inst_np = inst.cpu().numpy().astype(int)
        feature = {}
        for i in range(self.opt.label_nc):
            feature[i] = np.zeros((0, feat_num+1))
        for i in np.unique(inst_np):
            label = i if i < 1000 else i//1000
            idx = (inst == int(i)).nonzero()
            num = idx.size()[0]
            idx = idx[num//2,:]
            val = np.zeros((1, feat_num+1))                        
            for k in range(feat_num):
                val[0, k] = feat_map[idx[0], idx[1] + k, idx[2], idx[3]].data[0]            
            val[0, feat_num] = float(num) / (h * w // block_num)
            feature[label] = np.append(feature[label], val, axis=0)
        return feature

    def get_edges(self, t):                                                                                             # 边缘提取算子
        edge = torch.cuda.ByteTensor(t.size()).zero_()
        edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        if self.opt.data_type==16:
            return edge.half()
        else:
            return edge.float()

    # 保存模型参数
    def save(self, which_epoch):
        self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
        self.save_network(self.netD, 'D', which_epoch, self.gpu_ids)
        if self.gen_features:
            self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)

    def update_fixed_params(self):
        # after fixing the global generator for a number of iterations, also start finetuning it
        params = list(self.netG.parameters())
        if self.gen_features:
            params += list(self.netE.parameters())           
        self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
        if self.opt.verbose:
            print('------------ Now also finetuning global generator -----------')

    # 衰减学习率
    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd        
        for param_group in self.optimizer_D.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr
        if self.opt.verbose:
            print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr

class InferenceModel(Pix2PixHDModel):      # 推理模型,仅前向传播
    def forward(self, inp):
        label, inst = inp
        return self.inference(label, inst)

base_model.py

import os
import torch
import sys


# 模型基类
class BaseModel(torch.nn.Module):                                                       # 继承自torch.nn.Module
    def name(self):
        return 'BaseModel'

    def initialize(self, opt):
        self.opt = opt
        self.gpu_ids = opt.gpu_ids
        self.isTrain = opt.isTrain
        self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
        self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)                     # 保存路径:'./checkpoints/label2city'

    def set_input(self, input):
        self.input = input

    def forward(self):
        pass

    # used in test time, no backprop
    def test(self):
        pass

    def get_image_paths(self):
        pass

    def optimize_parameters(self):
        pass

    def get_current_visuals(self):
        return self.input

    def get_current_errors(self):
        return {}

    def save(self, label):                                                                # 保存标签
        pass

    # helper saving function that can be used by subclasses
    def save_network(self, network, network_label, epoch_label, gpu_ids):
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
        save_path = os.path.join(self.save_dir, save_filename)                            # 保存路径
        torch.save(network.cpu().state_dict(), save_path)                                 # 保存模型参数
        if len(gpu_ids) and torch.cuda.is_available():                                    # 如果有gpu,使用gpu
            network.cuda()

    # helper loading function that can be used by subclasses
    def load_network(self, network, network_label, epoch_label, save_dir=''):        
        save_filename = '%s_net_%s.pth' % (epoch_label, network_label)                    # 保存文件名
        if not save_dir:
            save_dir = self.save_dir
        save_path = os.path.join(save_dir, save_filename)                                 # 保存路径
        if not os.path.isfile(save_path):
            print('%s not exists yet!' % save_path)
            if network_label == 'G':
                raise('Generator must exist!')
        else:
            # network.load_state_dict(torch.load(save_path))
            try:                                                                          # 正常运行
                network.load_state_dict(torch.load(save_path))
            except:                                                                       # 异常处理
                pretrained_dict = torch.load(save_path)
                model_dict = network.state_dict()
                try:
                    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}                    
                    network.load_state_dict(pretrained_dict)
                    if self.opt.verbose:
                        print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
                except:
                    print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label)
                    for k, v in pretrained_dict.items():                      
                        if v.size() == model_dict[k].size():
                            model_dict[k] = v

                    if sys.version_info >= (3,0):
                        not_initialized = set()
                    else:
                        from sets import Set
                        not_initialized = Set()                    

                    for k, v in model_dict.items():
                        if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
                            not_initialized.add(k.split('.')[0])
                    
                    print(sorted(not_initialized))
                    network.load_state_dict(model_dict)                  

    def update_learning_rate():
        pass

networks.py

import torch
import torch.nn as nn
import functools
from torch.autograd import Variable
import numpy as np


###############################################################################
# Functions
###############################################################################
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find('BatchNorm2d') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


def get_norm_layer(norm_type='instance'):
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer


# define_G函数里面主要内容就是这几行,我们知道在Pix2PixHD中,G是有两部分的,
# 一部分是global net,
# 另一部分是local net,就是前两个if语句对应的分支。
# 第三个if语句对应的是论文中E的部分,用来预先计算类别特征,实现同样的semantic label的多样性输出。
# input_nc = 3
# output_nc = 3
# ngf = 64 第一层卷积核数
def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1,
             n_blocks_local=3, norm='instance', gpu_ids=[]):    
    norm_layer = get_norm_layer(norm_type=norm)     
    if netG == 'global':    
        netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)              # globle生成器
    elif netG == 'local':        
        netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global,                            # local生成器
                                  n_local_enhancers, n_blocks_local, norm_layer)
    elif netG == 'encoder':
        netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
    else:
        raise('generator not implemented!')
    print(netG)                                                                                                         # 打印生成网络
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())   
        netG.cuda(gpu_ids[0])
    netG.apply(weights_init)
    return netG
# 接着我们进入看看GlobalGenerator的结构,就不看LocalEnhancer了。


# 按照论文的说法,Pix2PixHD的D是有多个D;本代码设置为2。
def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[]):
    norm_layer = get_norm_layer(norm_type=norm)   
    # 在define_D中,主要内容是下面这行。
    netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat)
    print(netD)                                                                                                         # 打印判别网络
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())
        netD.cuda(gpu_ids[0])
    netD.apply(weights_init)
    return netD


def print_network(net):
    if isinstance(net, list):
        net = net[0]
    num_params = 0
    for param in net.parameters():
        num_params += param.numel()
    print(net)
    print('Total number of parameters: %d' % num_params)


##############################################################################
# Losses
##############################################################################
class GANLoss(nn.Module):
    def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
                 tensor=torch.FloatTensor):
        super(GANLoss, self).__init__()
        self.real_label = target_real_label
        self.fake_label = target_fake_label
        self.real_label_var = None
        self.fake_label_var = None
        self.Tensor = tensor
        if use_lsgan:
            self.loss = nn.MSELoss()                                                                                    # 在构造函数中我们可以看出,如果没有在网络最后使用sigmoid,那就使用MSE loss
        else:
            self.loss = nn.BCELoss()

    def get_target_tensor(self, input, target_is_real):
        target_tensor = None
        if target_is_real:
            create_label = ((self.real_label_var is None) or
                            (self.real_label_var.numel() != input.numel()))
            if create_label:
                real_tensor = self.Tensor(input.size()).fill_(self.real_label)
                self.real_label_var = Variable(real_tensor, requires_grad=False)
            target_tensor = self.real_label_var
        else:
            create_label = ((self.fake_label_var is None) or
                            (self.fake_label_var.numel() != input.numel()))
            if create_label:
                fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
                self.fake_label_var = Variable(fake_tensor, requires_grad=False)
            target_tensor = self.fake_label_var
        return target_tensor

    def __call__(self, input, target_is_real):
        if isinstance(input[0], list):
            loss = 0
            for input_i in input:
                pred = input_i[-1]
                target_tensor = self.get_target_tensor(pred, target_is_real)
                loss += self.loss(pred, target_tensor)
            return loss
        else:            
            target_tensor = self.get_target_tensor(input[-1], target_is_real)
            return self.loss(input[-1], target_tensor)                                                                  # 最后返回损失函数值


class VGGLoss(nn.Module):
    def __init__(self, gpu_ids):
        super(VGGLoss, self).__init__()        
        self.vgg = Vgg19().cuda()
        self.criterion = nn.L1Loss()
        self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]        

    def forward(self, x, y):              
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        for i in range(len(x_vgg)):
            loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())                                       # 这个detach非常有必要,避免了多余的梯度累加。
        return loss


##############################################################################
# Generator
##############################################################################
class LocalEnhancer(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, 
                 n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'):        
        super(LocalEnhancer, self).__init__()
        self.n_local_enhancers = n_local_enhancers                                                                      # 局部增强的数量,默认为1
        
        ###### global generator model #####
        ngf_global = ngf * (2**n_local_enhancers)                                                                       # 32 * 2= 64
        model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model        
        model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers      # 去掉最后的卷积层
        self.model = nn.Sequential(*model_global)                

        ###### local enhancer layers #####
        for n in range(1, n_local_enhancers+1):
            ### downsample
            ngf_global = ngf * (2**(n_local_enhancers-n))
            # [3,512,512]->[64,512,512]->[128,512,512]
            model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), 
                                norm_layer(ngf_global), nn.ReLU(True),
                                nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), 
                                norm_layer(ngf_global * 2), nn.ReLU(True)]
            ### residual blocks
            model_upsample = []
            for i in range(n_blocks_local):
                model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)]

            ### upsample
            # [128,512,512]->[64,512,512]
            model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), 
                               norm_layer(ngf_global), nn.ReLU(True)]      

            ### final convolution
            # [64,512,512]->[3, 512, 512]
            if n == n_local_enhancers:                
                model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]                       
            
            setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample))
            setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample))                  
        
        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def forward(self, input): 
        ### create input pyramid
        input_downsampled = [input]
        for i in range(self.n_local_enhancers):
            input_downsampled.append(self.downsample(input_downsampled[-1]))

        ### output at coarest level
        output_prev = self.model(input_downsampled[-1])        
        ### build up one layer at a time
        for n_local_enhancers in range(1, self.n_local_enhancers+1):
            model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1')
            model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2')            
            input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers]            
            output_prev = model_upsample(model_downsample(input_i) + output_prev)
        return output_prev


# 全局生成器
class GlobalGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, 
                 padding_type='reflect'):
        assert(n_blocks >= 0)
        super(GlobalGenerator, self).__init__()        
        activation = nn.ReLU(True)

        # 先定义第一层,用的是zero_padding,因为第一层用的是7x7的卷积核,padding=0,卷积后分辨率降低了3;
        # 因此再镜像填充ReflectionPad2d(3)
        # [3,512,512]->[64,512,512]
        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]

        # 之后就是下采样环节,每一层卷积的stride都是2
        ### downsample
        # [64,512,512]->[128,256,256]->[256,128,128]->[512,64,64]
        for i in range(n_downsampling):                                                                                 # netG中的下采样层数,即下采样三次;i从0到3,不包括3
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), activation]

        # 之后就是残差块,残差块不改变分辨率。和论文描述一致。
        ### resnet blocks
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]

        # 之后就是和下采样数目一样的上采样部分,上采样部分不像Unet结构,没有用到下采样得到的特征图。
        ### upsample
        # [512,64,64]->[256,128,128]->[128,256,256]->[64,512,512]
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), activation]

        # 之后就是模型的输出层。注意没有使用BN。
        # [64,512,512]->[3,512,512]
        model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
        self.model = nn.Sequential(*model)
            
    def forward(self, input):
        return self.model(input)             


# Define a resnet block
class ResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)

    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim),
                       activation]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out


class Encoder(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d):
        super(Encoder, self).__init__()        
        self.output_nc = output_nc        

        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), 
                 norm_layer(ngf), nn.ReLU(True)]             
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), nn.ReLU(True)]

        ### upsample         
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), nn.ReLU(True)]        

        model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]
        self.model = nn.Sequential(*model) 

    def forward(self, input, inst):
        outputs = self.model(input)

        # instance-wise average pooling
        outputs_mean = outputs.clone()
        inst_list = np.unique(inst.cpu().numpy().astype(int))        
        for i in inst_list:
            for b in range(input.size()[0]):
                indices = (inst[b:b+1] == int(i)).nonzero() # n x 4            
                for j in range(self.output_nc):
                    output_ins = outputs[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]]                    
                    mean_feat = torch.mean(output_ins).expand_as(output_ins)                                        
                    outputs_mean[indices[:,0] + b, indices[:,1] + j, indices[:,2], indices[:,3]] = mean_feat                       
        return outputs_mean


###########################################################################################################
#  多尺度判别器
###########################################################################################################
class MultiscaleDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, 
                 use_sigmoid=False, num_D=3, getIntermFeat=False):
        super(MultiscaleDiscriminator, self).__init__()
        self.num_D = num_D                                                                                              # 判别器的数量默认设置为2
        self.n_layers = n_layers
        self.getIntermFeat = getIntermFeat
     
        for i in range(num_D):
            # 生成的NLayerDiscriminator类,被设置为当前类(self)的一个属性。生成num_D个D。
            # 跳到NLayerDiscriminator看看。
            netD = NLayerDiscriminator(input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat)
            if getIntermFeat:                                                                                           # 忽略这条分支
                for j in range(n_layers+2):
                    ### setattr() 函数对应函数 getattr(),用于设置属性值,该属性不一定是存在的。
                    setattr(self, 'scale'+str(i)+'_layer'+str(j), getattr(netD, 'model'+str(j)))                        # 比如scale1_layer4属性赋值
            else:
                setattr(self, 'layer'+str(i), netD.model)

        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)                            # 下采样

    def singleD_forward(self, model, input):
        if self.getIntermFeat:
            result = [input]
            for i in range(len(model)):
                result.append(model[i](result[-1]))
            return result[1:]
        else:
            return [model(input)]

    # 主要看下D的前向传播过程
    def forward(self, input):
        num_D = self.num_D                                                                                              # 判别器D的数量
        result = []
        input_downsampled = input
        for i in range(num_D):
            if self.getIntermFeat:
                model = [getattr(self, 'scale'+str(num_D-1-i)+'_layer'+str(j)) for j in range(self.n_layers+2)]
            else:
                model = getattr(self, 'layer'+str(num_D-1-i))
            result.append(self.singleD_forward(model, input_downsampled))                                               # 两个结果大小是2倍关系
            if i != (num_D-1):
                input_downsampled = self.downsample(input_downsampled)
        return result


# 用指定的参数定义PatchGAN鉴别器
class NLayerDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False):
        super(NLayerDiscriminator, self).__init__()
        self.getIntermFeat = getIntermFeat
        self.n_layers = n_layers

        kw = 4
        # np.ceil(ndarray)计算大于等于该值的最小整数
        # >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
        # >>> np.ceil(a)
        # array([-1., -1., -0.,  1.,  2.,  2.,  2.])
        padw = int(np.ceil((kw-1.0)/2))                                                                                 # padw = 2
        # [3, 512, 512] -> [64, 257, 257]
        sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]

        nf = ndf
        # [64, 257, 257] -> [128, 129, 129] -> [256, 65, 65]
        for n in range(1, n_layers):
            nf_prev = nf
            nf = min(nf * 2, 512)                                                                                       # nf = 128, 256
            sequence += [[
                nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),                                         # nf_prev = 64, 128
                norm_layer(nf), nn.LeakyReLU(0.2, True)
            ]]

        nf_prev = nf
        nf = min(nf * 2, 512)
        # [256, 65, 65] -> [64, 32, 32]
        sequence += [[
            nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
            norm_layer(nf),
            nn.LeakyReLU(0.2, True)
        ]]
        # [64, 32, 32] -> [1, 16, 16]
        sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]

        if use_sigmoid:                                                                                                 # use_sigmiod是False,即D的输出不使用sigmiod
            sequence += [[nn.Sigmoid()]]

        if getIntermFeat:
            for n in range(len(sequence)):
                setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
        else:
            sequence_stream = []
            for n in range(len(sequence)):
                sequence_stream += sequence[n]
            self.model = nn.Sequential(*sequence_stream)
        # 至此,G和D就定义完成了,至于E,不是主要内容,就不多说了。

    def forward(self, input):
        if self.getIntermFeat:
            res = [input]
            for n in range(self.n_layers+2):
                model = getattr(self, 'model'+str(n))                                                                   # 定义的model
                res.append(model(res[-1]))
            return res[1:]                                                                                              # 返回model
        else:
            return self.model(input)                                                                                    # 返回model


from torchvision import models


class Vgg19(torch.nn.Module):
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)        
        h_relu3 = self.slice3(h_relu2)        
        h_relu4 = self.slice4(h_relu3)        
        h_relu5 = self.slice5(h_relu4)                
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out

相关标签: GAN PyTorch

上一篇:

下一篇: