欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

HBase MVCC and built-in Atomic Operations

程序员文章站 2023-12-30 22:00:34
...

By Lars Hofhansl (This is a follow to my ACID in HBase post from March this year) HBase has a few special atomic operations: checkAndPut, checkAndDelete - these simply check a value of a column as a precondition and then apply the Put or D

By Lars Hofhansl

(This is a follow to my ACID in HBase post from March this year)
HBase has a few special atomic operations:
  • checkAndPut, checkAndDelete - these simply check a value of a column as a precondition and then apply the Put or Delete if the check succeeded.
  • Increment, Append - these allow an atomic add to a column value interpreted as an integer, or append to the end of a column, resp.
checkAndPut and checkAndDelete are idempotent in the sense that they can safely be applied multiple time (but note that their outcome might differ when other changes are applied between the retries).

Increment and Append are not idempotent. They are the only non-repeatable operations in HBase. Increment and Append are also the only operations for which the snapshot isolation provided by HBase's MVCC model is not sufficient... More on that later.

In turns out that checkAndPut and checkAndDelete are not as atomic as expected (the issue was raised by Gregory and despite me not believing it first he is right - see HBASE-7051).

A look at the code makes this quite obvious:
Some of the Put optimizations (HBASE-4528) allow releasing the rowlock before the changes are sync'ed to the WAL. This also requires the lock to be released before the MVCC changes are committed so that changes are not visible to other transaction before they are guaranteed to be durable.
Another operation (such as checkAndXXX) that acquires the rowlock to make atomic changes may in fact not see current picture of things despite holding the rowlock as there could be still outstanding MVCC changes that only become visible after the row lock was release and re-acquired. So it might operate on stale data. Holding the rowlock is no longer good enough after HBASE-4528.

Increment and Append have the same issue.

The fix for this part is relatively simple: We need a "MVCC barrier" of sorts. Instead of completing a single MVCC transaction at the end of the update phase (which will wait for all prior transactions to finish), we just wait a little earlier instead for prior transactions to finish before we start the check or get phase of the atomic operation. This only reduces concurrency slightly, since before the end of the operation we have to await all prior transactions anyway. HBASE-7051 does exactly that for the checkAndXXX operations.

In addition - as mentioned above - Increment and Append have another issue, they need to be serializable transactions. Snapshot isolation is not good enough.
For example: If you start with 0 and issue an increment of 1 and another increment of 2 the outcome must always be 3. If both could start with the same start value (a snapshot) the outcome could 1 or 2 depending on which one finishes first.

Increment and Append currently skirt the issue with an ugly "hack": When they write their changes into the memstore they set the memstoreTS of all new KeyValues to 0! The effect is that they are made visible to other transactions immediately, violating HBase's MVCC. Again see ACID in HBase for an explanation of the memstoreTS.
This guarantees the correct outcome of concurrent Increment and Append operations, but the visibility to concurrent scanners is not what you expect. An Incremented and Appended value even for partial rows can be become visible to any scanner at any time even though the scanner should see an earlier snapshot of the data.
Increment and Append are also designed for very high throughput so they actually manipulate HBase's memstore to remove older versions of the columns just modified. Thus you lose the version history of the changes in exchange for avoiding a memstore exploding with version of the many Increments or Appends. This is called "upsert" in HBase. Upsert is nice in that it prevents the memstore being filled will a lot of old value if nobody cares for them. The downside is that is a special operation on the memstore, and hard to get right w.r.t. MVCC. It also does not work with mslab (see this Cloudera blog post for explanation of mslab).

If you don't care about visibility this is a simple problem, since you can just look through the memstore and remove old values. If you care about MVCC, though, you have to prove first that is safe to remove a KV.

I tried to fix this almost exactly a year ago (HBASE-4583), but after some discussions with my fellow committers we collectively gave up on that.

A few days ago I reopened HBASE-4583 and started with a radical patch that gets rid of all upsert-type logic (which set the memstoreTS to 0) and just awaits prior transactions before commencing the Increment/Append. Then I rely on my changes from HBASE-4241 to only flush the versions of columns needed when it is time to flush the memstore to disk. Turns out this is still quite a bit slower (10-15%), since it needs to flush the memstore frequently even thought it leads to mostly empty files. Still that was nice try, as it gets rid of a lot of special code and turns Increment and Append into normal HBase citizens.

A 2nd less radical version makes upsert MVCC aware.

That is actually not as easy as it looks. In order to remove a version of a column (a KeyValue) from the memstore you have to prove that is not and will not be seen by any concurrent or future scanner. That means we have to find the earliest readpoint of any scanner and ensure that there is at least one version of the KV older than that smallest readpoint; then we can safely remove any older versions of that KV from the memstore - because any scanner is guaranteed to see a newer version of the KV.
The "less radical" patch in does exactly that.

In the end the patch I ended up committed with HBASE-4583 does both:
If the column family that has the column to be incremented or appended to has VERSIONS set to 1, we perform an MVCC aware upsert added by the patch. If VERSIONS is > 1, we use the usual logic to add a KeyValue to the memstore. So now this behaves as expected in all cases. If multiple versions are requested they are retained and time range queries will work even with Increment and Append; and it also keeps the performance characteristics (mostly) when VERSIONS is set to 1.

上一篇:

下一篇: