LinkedHashMap 核心源码分析
文章目录
LinkedHashMap 本身是继承 HashMap 的,所以它拥有 HashMap 的所有特性,再此基础上,还提供了两大特性:
- 按照插入顺序进行访问;
- 实现了访问最少最先删除功能,其目的是把很久都没有访问的 key 自动删除。
1 按照插入顺序访问
1.1 LinkedHashMap 链表结构
// 继承 Node,为数组的每个元素增加了 before 和 after 属性
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
// 链表头
transient LinkedHashMap.Entry<K,V> head;
// 链表尾
transient LinkedHashMap.Entry<K,V> tail;
// 控制两种访问模式的字段,默认 false
// true 按照访问顺序,会把经常访问的 key 放到队尾
// false 按照插入顺序提供访问
final boolean accessOrder;
LinkedHashMap 的数据结构很像是把 LinkedList 的每个元素换成了 HashMap 的 Node,像是两者的结合体,也正是因为增加了这些结构,从而能把 Map 的元素都串联起来,形成一个链表,而链表就可以保证顺序了,就可以维护元素插入进来的顺序。
1.2 如何按照顺序新增
LinkedHashMap 初始化时,默认 accessOrder 为 false,就是会按照插入顺序提供访问,插入方法使用的是父类 HashMap 的 put 方法,不过覆写了 put 方法执行中调用的 newNode/newTreeNode 和 afterNodeAccess 方法。
newNode/newTreeNode 方法,控制新增节点追加到链表的尾部,这样每次新节点都追加到尾部,即可保证插入顺序了,我们以 newNode 源码为例:
// 新增节点,并追加到链表的尾部
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
// 新增节点
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
// 追加到链表的尾部
linkNodeLast(p);
return p;
}
// link at the end of list
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
// 新增节点等于位节点
tail = p;
// last 为空,说明链表为空,首尾节点相等
if (last == null)
head = p;
// 链表有数据,直接建立新增节点和上个尾节点之间的前后关系即可
else {
p.before = last;
last.after = p;
}
}
LinkedHashMap 通过新增头节点、尾节点,给每个节点增加 before、after 属性,每次新增时,都把节点追加到尾节点等手段,在新增的时候,就已经维护了按照插入顺序的链表结构了。
1.3 按照顺序访问
LinkedHashMap 只提供了单向访问,即按照插入的顺序从头到尾进行访问,不能像 LinkedList 那样可以双向访问。
我们主要通过迭代器进行访问,迭代器初始化的时候,默认从头节点开始访问,在迭代的过程中,不断访问当前节点的 after 节点即可。
Map 对 key、value 和 entity(节点) 都提供出了迭代的方法,假设我们需要迭代 entity,就可使用 LinkedHashMap.entrySet().iterator() 这种写法直接返回 LinkedHashIterator ,LinkedHashIterator 是迭代器,我们调用迭代器的 nextNode 方法就可以得到下一个节点,迭代器的源码如下:
// 初始化时,默认从头节点开始访问
LinkedHashIterator() {
// 头节点作为第一个访问的节点
next = head;
expectedModCount = modCount;
current = null;
}
final LinkedHashMap.Entry<K,V> nextNode() {
LinkedHashMap.Entry<K,V> e = next;
if (modCount != expectedModCount)// 校验
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
current = e;
next = e.after; // 通过链表的 after 结构,找到下一个迭代的节点
return e;
}
在新增节点时,我们就已经维护了元素之间的插入顺序了,所以迭代访问时非常简单,只需要不断的访问当前节点的下一个节点即可。
2 访问最少删除策略
这种策略也叫做 LRU(Least recently used,最近最少使用),大概的意思就是经常访问的元素会被追加到队尾,这样不经常访问的数据自然就靠近队头,然后我们可以通过设置删除策略,比如当 Map 元素个数大于多少时,把头节点删除。
2.1 元素被转移到队尾
调用get 时,元素会被移动到队尾:
public V get(Object key) {
Node<K,V> e;
// 调用 HashMap get 方法
if ((e = getNode(hash(key), key)) == null)
return null;
// 如果设置了 LRU 策略
if (accessOrder)
// 这个方法把当前 key 移动到队尾
afterNodeAccess(e);
return e.value;
}
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
从上述源码中,可以看到,通过 afterNodeAccess 方法把当前访问节点移动到了队尾,其实不仅仅是 get 方法,执行 getOrDefault、compute、computeIfAbsent、computeIfPresent、merge 方法时,也会这么做,通过不断的把经常访问的节点移动到队尾,那么靠近队头的节点,自然就是很少被访问的元素了。
2.2 删除策略
LinkedHashMap 本身是没有 put 方法实现的,调用的是 HashMap 的 put 方法,但 LinkedHashMap 实现了 put 方法中的调用 afterNodeInsertion 方法,这个方式实现了删除,我们看下源码:
// 删除很少被访问的元素,被 HashMap 的 put 方法所调用
void afterNodeInsertion(boolean evict) {
// 得到元素头节点
LinkedHashMap.Entry<K,V> first;
// removeEldestEntry 来控制删除策略,如果队列不为空,并且删除策略允许删除的情况下,删除头节点
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
// removeNode 删除头节点
removeNode(hash(key), key, null, false, true);
}
}
3 小结
LinkedHashMap 提供了两个功能:按照插入顺序访问和删除最少访问元素策略,简单地通过链表的结构就实现了,设计得非常巧妙。