欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Fruit Slicer Kattis - fruitslicer(计算几何+思维)

程序员文章站 2022-03-02 10:55:48
...

题意

给出n个圆的圆心坐标,每个圆的半径为1,问一条直线最多可穿过多少个圆

题解

类似于标准化的思想,首先以一个圆为基准,将其平移到圆心位置,同样的其他圆也要在同方向移动相同位移,之后再在其他的圆中任意找一个圆,以原点为圆心,将其旋转到与y=±1相切,为保持圆的相对位置不变,其他圆也要旋转相同角度,然后只需枚举每个圆的水平切线,再依据每条切线判断穿过圆的个数就方便多了,若一个圆的水平切线不满足-1≤y≤1,则舍弃,否则保存,最后对切线依次判断即可

#include <bits/stdc++.h>
#include <unordered_set>
#include <unordered_map>
#define _for(i, a, b) for(int i = a; i < b; ++i)
#define _rep(i, a, b) for(int i = a; i <= b; ++i)
#define closeIO ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define debug cout << "******************" << endl
#define FREE freopen("in.txt", "r", stdin)
#define FREO freopen("out.txt", "w", stdout)
#define ls l, m, rt << 1
#define rs m + 1, r, rt << 1 | 1
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef long double LD;
const int MAXN = 1e5 + 10;
const int MOD = 998244353;
const LD eps = 1e-10;
struct Point {
	LD x, y;
	Point(double x = 0, double y = 0) :x(x), y(y) {}
	void input() { scanf("%Lf%Lf", &x, &y); }
};
typedef Point Vector;
Vector operator+ (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator- (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator* (Vector A, double p) { return Vector(A.x * p, A.y * p); }
Vector operator/ (Vector A, double p) { return Vector(A.x / p, A.y / p); }
bool operator< (const Point& a, const Point& b) { return a.x < b.x || a.x == b.x&&a.y < b.y; }
int dcmp(LD x) { if (fabs(x) < eps) return 0; return x < 0 ? -1 : 1; }
bool operator==(const Point& a, const Point& b) {
	return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}
LD Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
LD Length(Vector A) { return sqrt(Dot(A, A)); }
LD Angle(Vector A, Vector B) {
	if (dcmp(Length(B)) == 0) return 0;
	return acos(Dot(A, B) / Length(A) / Length(B));
}
LD Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
LD Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
Vector Rotate(Vector A, LD rad) {
	return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
}
Vector Normal(Vector A) {
	LD L = Length(A);
	return Vector(-A.y / L, A.x / L);
}
inline bool inside(LD x) {
	return dcmp(x + 1) >= 0 && dcmp(x - 1) <= 0;
}
int n;
Point P[105], Q[105];
int ans = 0;
int main() {
	scanf("%d", &n);
	_for(i, 0, n) P[i].input();
	if (n == 1) { printf("1\n"); return 0; }
	if (n == 2) { printf("2\n"); return 0; }
	sort(P, P + n);
	_for(i, 0, n) {
		Vector deltav(-P[i].x, -P[i].y);
		_for(j, 0, n) P[j] = P[j] + deltav;
		_for(j, i + 1, n) {
			LD rad = Angle(Vector(1, 0), Vector(P[j]));
			if (dcmp(Cross(Vector(1, 0), Vector(P[j]))) > 0) {
				_for(k, 0, n) Q[k] = Rotate(Vector(P[k]), -rad);
			}
			else {
				_for(k, 0, n) Q[k] = Rotate(Vector(P[k]), rad);
			}
			vector<LD> vec;
			int cnt;
			_for(k, 0, n) {
				if (k == i || k == j) continue;
				if (dcmp(fabs(Q[k].y) - 2) > 0) continue;
				if (inside(Q[k].y + 1)) vec.push_back(Q[k].y + 1);
				if (inside(Q[k].y - 1)) vec.push_back(Q[k].y - 1);
			}
			vec.push_back(1);
			vec.push_back(-1);
			_for(k, 0, vec.size()) {
				int cnt = 2;
				LD d = vec[k];
				_for(t, 0, n) {
					if (t == i || t == j) continue;
					if (dcmp(d + 1 - Q[t].y) >= 0 && dcmp(d - Q[t].y - 1) <= 0) ++cnt;
				}
				ans = max(ans, cnt);
			}
		}
	}
	printf("%d\n", ans);
	return 0;
}