欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python评价回归模型指标:决定系数R2,相关系数R,均方误差MSE,均方根误差RMSE

程序员文章站 2023-12-27 08:20:21
python实现回归相关系数计算的几种方法#计算回归相关系数的方法 确定Ok#第一种def calc_corr(a,b): a_avg = sum(a)/len(a) b_avg = sum(b)/len(b) cov_ab = sum([(x - a_avg)*(y - b_avg) for x,y in zip(a, b)]) sq = math.sqrt(sum([(x - a_avg)**2 for x in a])*sum([(x - b_avg)**2...
#计算回归相关系数的方法   确定Ok

#相关系数第一种
def calc_corr(a,b):
    a_avg = sum(a)/len(a)
    b_avg = sum(b)/len(b)
    cov_ab = sum([(x - a_avg)*(y - b_avg) for x,y in zip(a, b)])
    sq = math.sqrt(sum([(x - a_avg)**2 for x in a])*sum([(x - b_avg)**2 for x in b]))
    corr_factor = cov_ab/sq
    return corr_factor

#相关系数第二种
import numpy as np
from astropy.units import Ybarn
import math
 
def computeCorrelation(X, Y):
    xBar = np.mean(X)
    yBar = np.mean(Y)
    SSR = 0
    varX = 0
    varY = 0
    for i in range(0 , len(X)):
        diffXXBar = X[i] - xBar
        diffYYBar = Y[i] - yBar
        SSR += (diffXXBar * diffYYBar)
        varX +=  diffXXBar**2
        varY += diffYYBar**2
    
    SST = math.sqrt(varX * varY)
    return SSR / SST
 

 #决定系数
 from sklearn.metrics import r2_score
 r2_score(y_true,y_pred)


#均方误差、均方根误差
from sklearn.merics import mean_squared_error
mes = mean_squared_error(y_true,y_pred)
rmse = np.sqrt(mse)

本文地址:https://blog.csdn.net/Ms__zhao/article/details/107352580

上一篇:

下一篇: