数据结构封装之《LGraph邻接表式图》
程序员文章站
2023-12-27 08:16:03
...
说明:
- 邻接表是图的另一种有效的存储表示方法. 每个顶点u建立一个单链表, 链表中每个结点代表一条边《u, v》,为边结点,每个单链表相当于邻接矩阵的一行;
- 通过复用LinkList和LinkQueue的方法封装的LGraph,请看:
数据结构封装之《LinkList单向链表》
数据结构封装之《LinkQueue链式队列》下面将给出该数据结构的代码,每个函数的结构分析 ,以及个别主要函数的汇编分析
代码:
TGraph.h
#ifndef _LGRAPH_H_
#define _LGRAPH_H_
typedef void LGraph;
typedef void LVertex;
typedef void (LGraph_Printf)(LVertex*);
//创建并返回有n个顶点的图
LGraph* LGraph_Create(LVertex** v, int n);
//销毁graph
void LGraph_Destroy(LGraph* graph);
//将graph所值图的边集合清空
void LGraph_Clear(LGraph* graph);
//在graph所值的v1和v2之间加上边,且边的权为w
int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w);
//将graph所指图中v1和v2之间的边删除,返回权值
int LGraph_RemoveEdge(LGraph* graph, int v1, int v2);
//将graph所值图中v1和v2之间的权值返回
int LGraph_GetEdge(LGraph* graph, int v1, int v2);
//将graph所指图中v顶点的度数返回
int LGraph_TD(LGraph* graph, int v);
//将graph所值图中的定点数返回
int LGraph_VertexCount(LGraph* graph);
//将graph所指图中的边数返回
int LGraph_EdgeCount(LGraph* graph);
//深度优先遍历
void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc);
//广度优先遍历
void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc);
void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc);
#endif
TGraph.c
#include <malloc.h>
#include <stdio.h>
#include "LGraph.h"
#include "LinkList.h"
#include "LinkQueue.h"
typedef struct _tag_LGraph
{
int count;
LVertex** v;
LinkList** la;
} TLGraph;
typedef struct _tag_ListNode
{
LinkListNode header;
int v;
int w;
} TListNode;
//深度优先递归遍历
static void recursive_dfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
{
int i = 0;
pFunc(graph->v[v]);//打印当前元素数据
visited[v] = 1;//已访问的元素下标,要做标志
printf(", ");
//当前元素的下级元素访问
for(i=0; i<LinkList_Length(graph->la[v]); i++)
{
TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);
//检查是否被访问过,若无则进入该元素的深度遍历
if( !visited[node->v] )
{
recursive_dfs(graph, node->v, visited, pFunc);
}
}
}
//广度优先遍历
static void bfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
{
LinkQueue* queue = LinkQueue_Create();
if( queue != NULL )
{
LinkQueue_Append(queue, graph->v + v);//将当前元素入队
visited[v] = 1;//已访问的元素下标,要做标志
while( LinkQueue_Length(queue) > 0 )
{
int i = 0;
v = (LVertex**)LinkQueue_Retrieve(queue) - graph->v;//当前元素出队
pFunc(graph->v[v]);//打印当前访问的元素
printf(", ");
//检查当前元素是否有下级元素
for(i=0; i<LinkList_Length(graph->la[v]); i++)
{
TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);//逐一获取其下级元素
if( !visited[node->v] )//检查该下级元素是否被访问过
{
LinkQueue_Append(queue, graph->v + node->v);//将该没被访问的元素入队
visited[node->v] = 1;//入队的元素,标记已访问
}
}
}
}
LinkQueue_Destroy(queue);
}
LGraph* LGraph_Create(LVertex** v, int n) // O(n)
{
TLGraph* ret = NULL;
int ok = 1;
if( (v != NULL ) && (n > 0) )
{
ret = (TLGraph*)malloc(sizeof(TLGraph));
if( ret != NULL )
{
ret->count = n;
ret->v = (LVertex**)calloc(n, sizeof(LVertex*));
ret->la = (LinkList**)calloc(n, sizeof(LinkList*));
ok = (ret->v != NULL) && (ret->la != NULL);
if( ok )
{
int i = 0;
for(i=0; i<n; i++)
{
ret->v[i] = v[i];
}
for(i=0; (i<n) && ok; i++)
{
ok = ok && ((ret->la[i] = LinkList_Create()) != NULL);
}
}
if( !ok )
{
if( ret->la != NULL )
{
int i = 0;
for(i=0; i<n; i++)
{
LinkList_Destroy(ret->la[i]);
}
}
free(ret->la);
free(ret->v);
free(ret);
ret = NULL;
}
}
}
return ret;
}
void LGraph_Destroy(LGraph* graph) // O(n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
LGraph_Clear(tGraph);
if( tGraph != NULL )
{
int i = 0;
for(i=0; i<tGraph->count; i++)
{
LinkList_Destroy(tGraph->la[i]);
}
free(tGraph->la);
free(tGraph->v);
free(tGraph);
}
}
void LGraph_Clear(LGraph* graph) // O(n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
if( tGraph != NULL )
{
int i = 0;
for(i=0; i<tGraph->count; i++)
{
while( LinkList_Length(tGraph->la[i]) > 0 )
{
free(LinkList_Delete(tGraph->la[i], 0));
}
}
}
}
int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w) // O(1)
{
TLGraph* tGraph = (TLGraph*)graph;
TListNode* node = NULL;
int ret = (tGraph != NULL);
ret = ret && (0 <= v1) && (v1 < tGraph->count);
ret = ret && (0 <= v2) && (v2 < tGraph->count);
ret = ret && (0 < w) && ((node = (TListNode*)malloc(sizeof(TListNode))) != NULL);
if( ret )
{
node->v = v2;
node->w = w;
LinkList_Insert(tGraph->la[v1], (LinkListNode*)node, 0);
}
return ret;
}
int LGraph_RemoveEdge(LGraph* graph, int v1, int v2) // O(n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
int condition = (tGraph != NULL);
int ret = 0;
condition = condition && (0 <= v1) && (v1 < tGraph->count);
condition = condition && (0 <= v2) && (v2 < tGraph->count);
if( condition )
{
TListNode* node = NULL;
int i = 0;
for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
{
node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
if( node->v == v2)
{
ret = node->w;
LinkList_Delete(tGraph->la[v1], i);
free(node);
break;
}
}
}
return ret;
}
int LGraph_GetEdge(LGraph* graph, int v1, int v2) // O(n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
int condition = (tGraph != NULL);
int ret = 0;
condition = condition && (0 <= v1) && (v1 < tGraph->count);
condition = condition && (0 <= v2) && (v2 < tGraph->count);
if( condition )
{
TListNode* node = NULL;
int i = 0;
for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
{
node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
if( node->v == v2)
{
ret = node->w;
break;
}
}
}
return ret;
}
int LGraph_TD(LGraph* graph, int v) // O(n*n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
int condition = (tGraph != NULL);
int ret = 0;
condition = condition && (0 <= v) && (v < tGraph->count);
if( condition )
{
int i = 0;
int j = 0;
for(i=0; i<tGraph->count; i++)
{
for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
{
TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
if( node->v == v )
{
ret++;
}
}
}
ret += LinkList_Length(tGraph->la[v]);
}
return ret;
}
int LGraph_VertexCount(LGraph* graph) // O(1)
{
TLGraph* tGraph = (TLGraph*)graph;
int ret = 0;
if( tGraph != NULL )
{
ret = tGraph->count;
}
return ret;
}
int LGraph_EdgeCount(LGraph* graph) // O(n)
{
TLGraph* tGraph = (TLGraph*)graph;
int ret = 0;
if( tGraph != NULL )
{
int i = 0;
for(i=0; i<tGraph->count; i++)
{
ret += LinkList_Length(tGraph->la[i]);
}
}
return ret;
}
void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc)
{
TLGraph* tGraph = (TLGraph*)graph;
int* visited = NULL;
int condition = (tGraph != NULL);
condition = condition && (0 <= v) && (v < tGraph->count);
condition = condition && (pFunc != NULL);
condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
if( condition )
{
int i = 0;
//以深度优先方式,打印当前顶点的所有内容
recursive_dfs(tGraph, v, visited, pFunc);
//检查未访问的顶点
for(i=0; i<tGraph->count; i++)
{
if( !visited[i] )
{
recursive_dfs(tGraph, i, visited, pFunc);
}
}
printf("\n");
}
free(visited);
}
void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc)
{
TLGraph* tGraph = (TLGraph*)graph;
int* visited = NULL;
int condition = (tGraph != NULL);
condition = condition && (0 <= v) && (v < tGraph->count);
condition = condition && (pFunc != NULL);
condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
if( condition )
{
int i = 0;
//以广度优先方式,打印当前顶点的所有内容
bfs(tGraph, v, visited, pFunc);
//检查未访问的顶点
for(i=0; i<tGraph->count; i++)
{
if( !visited[i] )
{
bfs(tGraph, i, visited, pFunc);
}
}
printf("\n");
}
free(visited);
}
void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc) // O(n*n*n)
{
TLGraph* tGraph = (TLGraph*)graph;
if( (tGraph != NULL) && (pFunc != NULL) )
{
int i = 0;
int j = 0;
for(i=0; i<tGraph->count; i++)
{
printf("%d:", i);
pFunc(tGraph->v[i]);
printf(" ");
}
printf("\n");
for(i=0; i<tGraph->count; i++)
{
for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
{
TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
printf("<");
pFunc(tGraph->v[i]);
printf(", ");
pFunc(tGraph->v[node->v]);
printf(", %d", node->w);
printf(">");
printf(" ");
}
}
printf("\n");
}
}
main.c
#include <stdio.h>
#include <stdlib.h>
#include "LGraph.h"
void print_data(LVertex* v)
{
printf("%s", (char*)v);
}
int main(int argc, char *argv[])
{
LVertex* v[] = {"A", "B", "C", "D", "E", "F"};
LGraph* graph = LGraph_Create(v, 6);
LGraph_AddEdge(graph, 0, 1, 1);
LGraph_AddEdge(graph, 0, 2, 1);
LGraph_AddEdge(graph, 0, 3, 1);
LGraph_AddEdge(graph, 1, 5, 1);
LGraph_AddEdge(graph, 1, 4, 1);
LGraph_AddEdge(graph, 2, 1, 1);
LGraph_AddEdge(graph, 3, 4, 1);
LGraph_AddEdge(graph, 4, 2, 1);
LGraph_Display(graph, print_data);
LGraph_RemoveEdge(graph, 0, 1, 1);
int edgeW = LGraph_GetEdge(graph,0,2);
int td = LGraph_TD(graph,0);
int vc = LGraph_VertexCount(graph);
int ec = LGraph_EdgeCount(graph);
LGraph_DFS(graph, 0, print_data);
LGraph_BFS(graph, 0, print_data);
LGraph_Destroy(graph);
return 0;
}
函数结构分析:
1.tGraph_Create
2.LGraph_Destroy
3.LGraph_Clear
4.LGraph_AddEdge
5.LGraph_RemoveEdge
6.LGraph_GetEdge
7.LGraph_TD
8.LGraph_VertexCount
9.LGraph_EdgeCount
汇编分析:
main
1.tGraph_Create
2.LGraph_Destroy
3.LGraph_Clear
4.LGraph_AddEdge
5.LGraph_RemoveEdge
6.LGraph_GetEdge
7.LGraph_TD
8.LGraph_VertexCount
9.LGraph_EdgeCount