图论(三)--深度优先搜索(DFS)
程序员文章站
2023-12-27 08:07:39
...
基于算法导论图算法-深度优先搜索
- 题目描述
- 问题分析
- 源代码
- 结果截图
题目描述
深度优先搜索(用递归和栈分别实现):对图进行遍历,得到连通分支数,并求出每个顶点的发现时间和完成时间
问题分析
与广搜相同,每个顶点白色->灰色->黑色
伪代码
递归实现(栈实现伪代码未提供,可参见源代码)
源代码
void DFS(Graph G);//dfs图
void DFS_VISIT(Graph G, Vertex u);//从某个结点dfs递归实现
void DFS_visit_stack(Graph G, Vertex v);//深搜用栈实现
void print_path(Graph G, Vertex v);//打印一个点的深搜路径,沿着pred向上找
void print_path_everyPoint(Graph G);//打印每个顶点的深搜路径
图的顶点数据结构有所变化(添加发现时间和完成时间)
struct VertexRecord {
Vertex pred;//先驱结点
int in_degree;//入度
int out_degree;//出度
int color;//顶点状态
int dist;//距离源点的距离
int discover_time;//深搜发现时间
int finish_time;//深搜时的结束时间
List adjto;//指向第一个邻接结点的指针
};
#include<stack>
void print_path(Graph G, Vertex v) {//打印一个点的深搜路径,沿着pred向上找
if (G->vertices[v].pred != -1) {
print_path(G, G->vertices[v].pred);
}
printf(" %d", v);
}
void print_path_everyPoint(Graph G) {//打印每个顶点的深搜路径
for (int i = 0; i < G->vexnum; i++) {
printf("顶点%d的深搜路径为:",i);
print_path(G, i);
printf("\n");
}
}
void print_time_dfs(Graph G) {//打印每个顶点的发现时间和结束时间
for (int i = 0; i < G->vexnum; i++) {
printf("顶点%d发现时间:%d,结束时间为:%d", i, G->vertices[i].discover_time, G->vertices[i].finish_time);
printf("\n");
}
}
int Time;
//int count_finishTime_descreasing = VertexNum;
void DFS_VISIT(Graph G, Vertex u) {//递归实现深搜
Time = Time + 1;
G->vertices[u].discover_time = Time;
//if (G->vertices[u].pred == -1) G->vertices[u].dist = 0;
//else G->vertices[u].dist = G->vertices[G->vertices[u].pred].dist + 1;//权为1计算,此处为距离的计算
G->vertices[u].color = 1;//gray
PtrToNode ptr = G->vertices[u].adjto;
while (ptr != NULL) {
Vertex v = ptr->adjvex;
if (G->vertices[v].color == 0) {
G->vertices[v].pred = u;
DFS_VISIT(G, v);
}
ptr = ptr->next;
}
G->vertices[u].color = 2;//black
Time = Time + 1;
G->vertices[u].finish_time = Time;
}
void DFS_visit_stack(Graph G, Vertex v) {//深搜用栈实现
PtrToNode ptr;
stack<int> S;
S.push(v);
//G->vertices[v].dist = 0;
G->vertices[v].color = 1;//灰色
G->vertices[v].discover_time = ++Time;
printf("\n%d", v);
while (!S.empty()) {
Vertex u = S.top();
ptr = G->vertices[u].adjto;
while (ptr != NULL) {
if (G->vertices[ptr->adjvex].color == 0) {
S.push(ptr->adjvex);
//G->vertices[ptr->adjvex].dist = G->vertices[u].dist + 1;//权为1计算,此处为距离的计算
G->vertices[ptr->adjvex].color = 1;//灰色
Time++;
G->vertices[ptr->adjvex].discover_time = Time;
G->vertices[ptr->adjvex].pred = u;
printf(" %d", ptr->adjvex);
break;
}
ptr = ptr->next;
}
if (S.top() == u) {
G->vertices[u].color = 2;//黑色
Time++;
G->vertices[u].finish_time = Time;
//finishTime_descreasing[--count_finishTime_descreasing] = u;
S.pop();
}
}
printf("\n");
}
void DFS(Graph G) {
int count = 0;
for (int i = 0; i < G->vexnum; i++) {
G->vertices[i].color = 0;//白色
G->vertices[i].pred = -1;
}
Time = 0;
for (int i = 0; i < G->vexnum; i++) {
if (G->vertices[i].color == 0) {
//DFS_VISIT(G, i);
DFS_visit_stack(G, i);
count++;
}
}
printf("共有%d个连通分量\n", count);
print_path_everyPoint(G);//打印每个顶点的深搜路径
print_time_dfs(G);//打印每个顶点距离0的距离
}
int main() {
//有向图的随机生成(20个顶点,100左右的边,可以进行修改)
//CreateRandomDirectGraph();
//Graph G = CreateDirectGraph();
//无向边的随机生成(20个顶点,50左右的边)
CreateRandomUndirectGraph();
Graph G = CreateUndirectGraph();
printf("打印图结构:\n");
print_graph(G);//打印图
//printf("\n打印各顶点入度和出度:\n");
//print_VertexDegree(G);//打印顶点度数
//printf("\n打印每条边的权值:\n");
//print_EdgeWeight(G);//打印边权
//printf("\n下面是bfs:\n");
//BFS(G, 0);
printf("\n下面是dfs:");
DFS(G);
return 0;
}
结果截图