欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Task01:线性回归

程序员文章站 2023-12-26 23:58:33
...

线性回归的概念

1、线性回归的原理

2、线性回归损失函数、代价函数、目标函数

3、优化方法(梯度下降法、牛顿法、拟牛顿法等)

4、线性回归的评估指标

5、sklearn参数详解

1、线性回归的原理

线性回归的一般形式:

Task01:线性回归

极大似然估计(概率角度的诠释)

Task01:线性回归

2、线性回归损失函数、代价函数、目标函数

Task01:线性回归

3、线性回归的优化方法

1、梯度下降法

Task01:线性回归

2、最小二乘法矩阵求解

Task01:线性回归

Task01:线性回归

3、牛顿法

Task01:线性回归

4、拟牛顿法

Task01:线性回归

4、线性回归的评价指标

Task01:线性回归

5、sklearn.linear_model参数详解:

fit_intercept : 默认为True,是否计算该模型的截距。如果使用中心化的数据,可以考虑设置为False,不考虑截距。注意这里是考虑,一般还是要考虑截距

normalize: 默认为false. 当fit_intercept设置为false的时候,这个参数会被自动忽略。如果为True,回归器会标准化输入参数:减去平均值,并且除以相应的二范数。当然啦,在这里还是建议将标准化的工作放在训练模型之前。通过设置sklearn.preprocessing.StandardScaler来实现,而在此处设置为false

copy_X : 默认为True, 否则X会被改写

n_jobs: int 默认为1. 当-1时默认使用全部CPUs ??(这个参数有待尝试)

可用属性:

coef_:训练后的输入端模型系数,如果label有两个,即y值有两列。那么是一个2D的array

intercept_: 截距

可用的methods:

fit(X,y,sample_weight=None): X: array, 稀疏矩阵 [n_samples,n_features] y: array [n_samples, n_targets] sample_weight: 权重 array [n_samples] 在版本0.17后添加了sample_weight

get_params(deep=True): 返回对regressor 的设置值

predict(X): 预测 基于 R^2值

score: 评估

参考https://blog.csdn.net/weixin_39175124/article/details/79465558

 

生成数据

#生成数据
import numpy as np
#生成随机数
np.random.seed(1234)
x = np.random.rand(500,3)
#构建映射关系,模拟真实的数据待预测值,映射关系为y = 4.2 + 5.7*x1 + 10.8*x2,可自行设置值进行尝试
y = x.dot(np.array([4.2,5.7,10.8]))

1、先尝试调用sklearn的线性回归模型训练数据

import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
%matplotlib inline

# 调用模型
lr = LinearRegression(fit_intercept=True)
# 训练模型
lr.fit(x,y)
print("估计的参数值为:%s" %(lr.coef_))
# 计算R平方
print('R2:%s' %(lr.score(x,y)))
# 任意设定变量,预测目标值
x_test = np.array([2,4,5]).reshape(1,-1)
y_hat = lr.predict(x_test)
print("预测值为: %s" %(y_hat))

2、最小二乘法的矩阵求解

class LR_LS():
    def __init__(self):
        self.w = None      
    def fit(self, X, y):
        # 最小二乘法矩阵求解
        #============================= show me your code =======================
        self.w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
        #============================= show me your code =======================
    def predict(self, X):
        # 用已经拟合的参数值预测新自变量
        #============================= show me your code =======================
        y_pred = X.dot(self.w)
        #============================= show me your code =======================
        return y_pred

if __name__ == "__main__":
    lr_ls = LR_LS()
    lr_ls.fit(x,y)
    print("估计的参数值:%s" %(lr_ls.w))
    x_test = np.array([2,4,5]).reshape(1,-1)
    print("预测值为: %s" %(lr_ls.predict(x_test)))

3、梯度下降法

class LR_GD():
    def __init__(self):
        self.w = None     
    def fit(self,X,y,alpha=0.02,loss = 1e-10): # 设定步长为0.002,判断是否收敛的条件为1e-10
        y = y.reshape(-1,1) #重塑y值的维度以便矩阵运算
        [m,d] = np.shape(X) #自变量的维度
        self.w = np.zeros((d)) #将参数的初始值定为0
        tol = 1e5
        #============================= show me your code =======================
        while tol > loss:
            h_f = X.dot(self.w).reshape(-1,1) 
            theta = self.w + alpha*np.mean(X*(y - h_f),axis=0) #计算迭代的参数值
            tol = np.sum(np.abs(theta - self.w))
            self.w = theta
        #============================= show me your code =======================
    def predict(self, X):
        # 用已经拟合的参数值预测新自变量
        y_pred = X.dot(self.w)
        return y_pred  

if __name__ == "__main__":
    lr_gd = LR_GD()
    lr_gd.fit(x,y)
    print("估计的参数值为:%s" %(lr_gd.w))
    x_test = np.array([2,4,5]).reshape(1,-1)
    print("预测值为:%s" %(lr_gd.predict(x_test)))

参考

吴恩达 CS229课程

周志华 《机器学习》

李航 《统计学习方法》

https://hangzhou.anjuke.com/

https://www.jianshu.com/p/e0eb4f4ccf3e

https://blog.csdn.net/qq_28448117/article/details/79199835

https://blog.csdn.net/weixin_39175124/article/details/79465558

上一篇:

下一篇: