Task01:线性回归
线性回归的概念
1、线性回归的原理
2、线性回归损失函数、代价函数、目标函数
3、优化方法(梯度下降法、牛顿法、拟牛顿法等)
4、线性回归的评估指标
5、sklearn参数详解
1、线性回归的原理
线性回归的一般形式:
极大似然估计(概率角度的诠释)
2、线性回归损失函数、代价函数、目标函数
3、线性回归的优化方法
1、梯度下降法
2、最小二乘法矩阵求解
3、牛顿法
4、拟牛顿法
4、线性回归的评价指标
5、sklearn.linear_model参数详解:
fit_intercept : 默认为True,是否计算该模型的截距。如果使用中心化的数据,可以考虑设置为False,不考虑截距。注意这里是考虑,一般还是要考虑截距
normalize: 默认为false. 当fit_intercept设置为false的时候,这个参数会被自动忽略。如果为True,回归器会标准化输入参数:减去平均值,并且除以相应的二范数。当然啦,在这里还是建议将标准化的工作放在训练模型之前。通过设置sklearn.preprocessing.StandardScaler来实现,而在此处设置为false
copy_X : 默认为True, 否则X会被改写
n_jobs: int 默认为1. 当-1时默认使用全部CPUs ??(这个参数有待尝试)
可用属性:
coef_:训练后的输入端模型系数,如果label有两个,即y值有两列。那么是一个2D的array
intercept_: 截距
可用的methods:
fit(X,y,sample_weight=None): X: array, 稀疏矩阵 [n_samples,n_features] y: array [n_samples, n_targets] sample_weight: 权重 array [n_samples] 在版本0.17后添加了sample_weight
get_params(deep=True): 返回对regressor 的设置值
predict(X): 预测 基于 R^2值
score: 评估
参考https://blog.csdn.net/weixin_39175124/article/details/79465558
生成数据
#生成数据
import numpy as np
#生成随机数
np.random.seed(1234)
x = np.random.rand(500,3)
#构建映射关系,模拟真实的数据待预测值,映射关系为y = 4.2 + 5.7*x1 + 10.8*x2,可自行设置值进行尝试
y = x.dot(np.array([4.2,5.7,10.8]))
1、先尝试调用sklearn的线性回归模型训练数据
import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
%matplotlib inline
# 调用模型
lr = LinearRegression(fit_intercept=True)
# 训练模型
lr.fit(x,y)
print("估计的参数值为:%s" %(lr.coef_))
# 计算R平方
print('R2:%s' %(lr.score(x,y)))
# 任意设定变量,预测目标值
x_test = np.array([2,4,5]).reshape(1,-1)
y_hat = lr.predict(x_test)
print("预测值为: %s" %(y_hat))
2、最小二乘法的矩阵求解
class LR_LS():
def __init__(self):
self.w = None
def fit(self, X, y):
# 最小二乘法矩阵求解
#============================= show me your code =======================
self.w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
#============================= show me your code =======================
def predict(self, X):
# 用已经拟合的参数值预测新自变量
#============================= show me your code =======================
y_pred = X.dot(self.w)
#============================= show me your code =======================
return y_pred
if __name__ == "__main__":
lr_ls = LR_LS()
lr_ls.fit(x,y)
print("估计的参数值:%s" %(lr_ls.w))
x_test = np.array([2,4,5]).reshape(1,-1)
print("预测值为: %s" %(lr_ls.predict(x_test)))
3、梯度下降法
class LR_GD():
def __init__(self):
self.w = None
def fit(self,X,y,alpha=0.02,loss = 1e-10): # 设定步长为0.002,判断是否收敛的条件为1e-10
y = y.reshape(-1,1) #重塑y值的维度以便矩阵运算
[m,d] = np.shape(X) #自变量的维度
self.w = np.zeros((d)) #将参数的初始值定为0
tol = 1e5
#============================= show me your code =======================
while tol > loss:
h_f = X.dot(self.w).reshape(-1,1)
theta = self.w + alpha*np.mean(X*(y - h_f),axis=0) #计算迭代的参数值
tol = np.sum(np.abs(theta - self.w))
self.w = theta
#============================= show me your code =======================
def predict(self, X):
# 用已经拟合的参数值预测新自变量
y_pred = X.dot(self.w)
return y_pred
if __name__ == "__main__":
lr_gd = LR_GD()
lr_gd.fit(x,y)
print("估计的参数值为:%s" %(lr_gd.w))
x_test = np.array([2,4,5]).reshape(1,-1)
print("预测值为:%s" %(lr_gd.predict(x_test)))
参考
吴恩达 CS229课程
周志华 《机器学习》
李航 《统计学习方法》
https://www.jianshu.com/p/e0eb4f4ccf3e
https://blog.csdn.net/qq_28448117/article/details/79199835
https://blog.csdn.net/weixin_39175124/article/details/79465558