欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2018/8/19--OpenGL学习笔记(八)Mesh/Model

程序员文章站 2023-12-25 18:43:39
...

开篇的话:··········很久没有更新笔记了,因为这段时间忙于改简历和投简历还有面试,往后有看了几个章节,但是没有时间来回顾总结下,所以今天来把之前的补上


Assimp

(模型加载需要我们用到这个库,教程上让我们用Cmake来编译,因为第一章的时候,我Cmake就各种问题,索性我就网上找了别人编译好的包,直接来使用了。)

Mesh

#ifndef MESH_H
#define MESH_H

#include <glad/glad.h> 

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include "Shader.h"

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <vector>
using namespace std;

//定义一个顶点
struct Vertex {
	glm::vec3 Position;
	glm::vec3 Normal;
	glm::vec2 TexCoords;
	glm::vec3 Tangent;
	glm::vec3 Bitangent;
};

//将纹理数据整理到一个Texture结构体
struct Texture {
	unsigned int id;
	string type;
	string path; //储存纹理的路径用于与其它纹理进行比较
};

class Mesh {
public:
	/* 网格数据 */
	vector<Vertex> vertices;
	vector<unsigned int> indices;
	vector<Texture> textures;
	unsigned int VAO;

	/*  函数  */
	// 构造函数
	Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures)
	{
		this->vertices = vertices;
		this->indices = indices;
		this->textures = textures;

		setupMesh();
	}

	// 渲染mesh
	void Draw(Shader shader)
	{
		// 绑定适当的纹理
		unsigned int diffuseNr = 1;
		unsigned int specularNr = 1;
		unsigned int normalNr = 1;
		unsigned int heightNr = 1;
		for (unsigned int i = 0; i < textures.size(); i++)
		{
			glActiveTexture(GL_TEXTURE0 + i); // 在绑定之前**相应的纹理单元
			// 获取纹理序号(diffuse_textureN 中的 N)
			string number;
			string name = textures[i].type;
			if (name == "texture_diffuse")
				number = std::to_string(diffuseNr++);
			else if (name == "texture_specular")
				number = std::to_string(specularNr++); // transfer unsigned int to stream
			else if (name == "texture_normal")
				number = std::to_string(normalNr++); // transfer unsigned int to stream
			else if (name == "texture_height")
				number = std::to_string(heightNr++); // transfer unsigned int to stream

			// 设置贴图
			shader.setInt(((name + number).c_str()), i);
			// 绑定纹理
			glBindTexture(GL_TEXTURE_2D, textures[i].id);
		}

		// draw mesh
		glBindVertexArray(VAO);
		glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
		glBindVertexArray(0);

		// 将配置文件设置为默认
		glActiveTexture(GL_TEXTURE0);
	}

private:
	/*  渲染数据  */
	unsigned int VBO, EBO;

	/*  函数   */
	// 初始化缓冲
	void setupMesh()
	{
		// create buffers/arrays
		glGenVertexArrays(1, &VAO);
		glGenBuffers(1, &VBO);
		glGenBuffers(1, &EBO);

		glBindVertexArray(VAO);
		// load data into vertex buffers
		glBindBuffer(GL_ARRAY_BUFFER, VBO);

		glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);

		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
		glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);

		// vertex Positions
		glEnableVertexAttribArray(0);
		glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
		// vertex normals
		glEnableVertexAttribArray(1);
		glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
		// vertex texture coords
		glEnableVertexAttribArray(2);
		glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));
		// vertex tangent
		glEnableVertexAttribArray(3);
		glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
		// vertex bitangent
		glEnableVertexAttribArray(4);
		glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));

		glBindVertexArray(0);
	}
};
#endif

Model

#ifndef MODEL_H
#define MODEL_H

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>	

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <Importer.hpp>
#include <scene.h>
#include <postprocess.h>

#include "Shader.h"
#include "mesh.h"

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;

unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false);

class Model
{
public:
	/*  Model Data */
	vector<Texture> textures_loaded;	// stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
	vector<Mesh> meshes;
	string directory;
	bool gammaCorrection;

	/*  Functions   */
	// constructor, expects a filepath to a 3D model.
	Model(string const &path, bool gamma = false) : gammaCorrection(gamma)
	{
		loadModel(path);
	}

	// draws the model, and thus all its meshes
	void Draw(Shader shader)
	{
		for (unsigned int i = 0; i < meshes.size(); i++)
			meshes[i].Draw(shader);
	}

private:
	/*  Functions   */
	// loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
	void loadModel(string const &path)
	{
		// read file via ASSIMP
		Assimp::Importer importer;
		const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
		// check for errors
		if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
		{
			cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
			return;
		}
		// retrieve the directory path of the filepath
		directory = path.substr(0, path.find_last_of('/'));

		// process ASSIMP's root node recursively
		processNode(scene->mRootNode, scene);
	}

	// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
	void processNode(aiNode *node, const aiScene *scene)
	{
		// 处理位于当前节点的每个网格
		for (unsigned int i = 0; i < node->mNumMeshes; i++)
		{
			// the node object only contains indices to index the actual objects in the scene. 
			// the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
			aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
			meshes.push_back(processMesh(mesh, scene));
		}
		// 在我们处理完所有网格(如果有的话)后,我们会递归处理每个子节点
		for (unsigned int i = 0; i < node->mNumChildren; i++)
		{
			processNode(node->mChildren[i], scene);
		}

	}

	Mesh processMesh(aiMesh *mesh, const aiScene *scene)
	{
		// data to fill
		vector<Vertex> vertices;
		vector<unsigned int> indices;
		vector<Texture> textures;

		// Walk through each of the mesh's vertices
		for (unsigned int i = 0; i < mesh->mNumVertices; i++)
		{
			Vertex vertex;
			glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
			// positions
			vector.x = mesh->mVertices[i].x;
			vector.y = mesh->mVertices[i].y;
			vector.z = mesh->mVertices[i].z;
			vertex.Position = vector;
			// normals
			vector.x = mesh->mNormals[i].x;
			vector.y = mesh->mNormals[i].y;
			vector.z = mesh->mNormals[i].z;
			vertex.Normal = vector;
			// texture coordinates
			if (mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
			{
				glm::vec2 vec;
				// a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't 
				// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
				vec.x = mesh->mTextureCoords[0][i].x;
				vec.y = mesh->mTextureCoords[0][i].y;
				vertex.TexCoords = vec;
			}
			else
				vertex.TexCoords = glm::vec2(0.0f, 0.0f);
			// tangent
			vector.x = mesh->mTangents[i].x;
			vector.y = mesh->mTangents[i].y;
			vector.z = mesh->mTangents[i].z;
			vertex.Tangent = vector;
			// bitangent
			vector.x = mesh->mBitangents[i].x;
			vector.y = mesh->mBitangents[i].y;
			vector.z = mesh->mBitangents[i].z;
			vertex.Bitangent = vector;
			vertices.push_back(vertex);
		}
		// now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
		for (unsigned int i = 0; i < mesh->mNumFaces; i++)
		{
			aiFace face = mesh->mFaces[i];
			// retrieve all indices of the face and store them in the indices vector
			for (unsigned int j = 0; j < face.mNumIndices; j++)
				indices.push_back(face.mIndices[j]);
		}
		// process materials
		aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
		// we assume a convention for sampler names in the shaders. Each diffuse texture should be named
		// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER. 
		// Same applies to other texture as the following list summarizes:
		// diffuse: texture_diffuseN
		// specular: texture_specularN
		// normal: texture_normalN

		// 1. diffuse maps
		vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
		textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
		// 2. specular maps
		vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
		textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
		// 3. normal maps
		std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
		textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
		// 4. height maps
		std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
		textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());

		// return a mesh object created from the extracted mesh data
		return Mesh(vertices, indices, textures);
	}

	// checks all material textures of a given type and loads the textures if they're not loaded yet.
	// the required info is returned as a Texture struct.
	vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
	{
		vector<Texture> textures;
		for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
		{
			aiString str;
			mat->GetTexture(type, i, &str);
			// check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
			bool skip = false;
			for (unsigned int j = 0; j < textures_loaded.size(); j++)
			{
				if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
				{
					textures.push_back(textures_loaded[j]);
					skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
					break;
				}
			}
			if (!skip)
			{   // if texture hasn't been loaded already, load it
				Texture texture;
				texture.id = TextureFromFile(str.C_Str(), this->directory);
				texture.type = typeName;
				texture.path = str.C_Str();
				textures.push_back(texture);
				textures_loaded.push_back(texture);  // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
			}
		}
		return textures;
	}
};


unsigned int TextureFromFile(const char *path, const string &directory, bool gamma)
{
	string filename = string(path);
	filename = directory + '/' + filename;

	unsigned int textureID;
	glGenTextures(1, &textureID);

	int width, height, nrComponents;
	unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
	if (data)
	{
		GLenum format;
		if (nrComponents == 1)
			format = GL_RED;
		else if (nrComponents == 3)
			format = GL_RGB;
		else if (nrComponents == 4)
			format = GL_RGBA;

		glBindTexture(GL_TEXTURE_2D, textureID);
		glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

		stbi_image_free(data);
	}
	else
	{
		std::cout << "Texture failed to load at path: " << path << std::endl;
		stbi_image_free(data);
	}

	return textureID;
}
#endif

此时我们已经写好了mesh.h和model.h,接下在主函数:

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include "Shader.h"
#include "camera.h"
#include "model.h"
#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

float deltaTime = 0.0f;
float lastFrame = 0.0f;

int main()
{
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

	GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "mesh_load", NULL, NULL);
	if (window == NULL)
	{
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
}

	glfwMakeContextCurrent(window);

	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

	
	glEnable(GL_DEPTH_TEST);

	// build and compile shaders
	// -------------------------
	Shader ourShader("shader/mesh_vertexshader.vs", "shader/mesh_fragmentshader.vs");


	Model ourModel("nanosuit/nanosuit.obj");


	while (!glfwWindowShouldClose(window))
	{
		// per-frame time logic
		// --------------------
		float currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		// input
		// -----
		processInput(window);

		// render
		// ------
		glClearColor(0.05f, 0.05f, 0.05f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		// don't forget to enable shader before setting uniforms
		ourShader.use();
		ourShader.setVec3("viewPos", camera.Position);
		ourShader.setFloat("material.shininess", 32.0f);

		// directional light
		ourShader.setVec3("dirLight.direction", -0.2f, -1.0f, -0.3f);
		ourShader.setVec3("dirLight.ambient", 0.05f, 0.05f, 0.05f);
		ourShader.setVec3("dirLight.diffuse", 0.4f, 0.4f, 0.4f);
		ourShader.setVec3("dirLight.specular", 0.5f, 0.5f, 0.5f);

		// spotLight
		ourShader.setVec3("spotLight.position", camera.Position);
		ourShader.setVec3("spotLight.direction", camera.Front);
		ourShader.setVec3("spotLight.ambient", 0.0f, 0.0f, 0.0f);
		ourShader.setVec3("spotLight.diffuse", 1.0f, 1.0f, 1.0f);
		ourShader.setVec3("spotLight.specular", 1.0f, 1.0f, 1.0f);
		ourShader.setFloat("spotLight.constant", 1.0f);
		ourShader.setFloat("spotLight.linear", 0.09);
		ourShader.setFloat("spotLight.quadratic", 0.032);
		ourShader.setFloat("spotLight.cutOff", glm::cos(glm::radians(12.5f)));
		ourShader.setFloat("spotLight.outerCutOff", glm::cos(glm::radians(15.0f)));

		// view/projection transformations
		glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
		glm::mat4 view = camera.GetViewMatrix();
		ourShader.setMat4("projection", projection);
		ourShader.setMat4("view", view);

		// render the loaded model
		glm::mat4 model;
		model = glm::translate(model, glm::vec3(0.0f, -1.75f, 0.0f)); // translate it down so it's at the center of the scene
		model = glm::scale(model, glm::vec3(0.2f, 0.2f, 0.2f));	// it's a bit too big for our scene, so scale it down
		ourShader.setMat4("model", model);

		ourModel.Draw(ourShader);



		glfwSwapBuffers(window);
		glfwPollEvents();
	}

	glfwTerminate();
	return 0;
}

//回调函数
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
	//glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)
	glViewport(0, 0, width, height);
}

void processInput(GLFWwindow* window)
{
	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);

	if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
		camera.ProcessKeyboard(RIGHT, deltaTime);

}

void mouse_callback(GLFWwindow*window, double xpos, double ypos)
{
	if (firstMouse)
	{
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	float xoffset = xpos - lastX;
	float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
	camera.ProcessMouseScroll(yoffset);
}

unsigned int loadTexture(char const * path)
{
	unsigned int textureID;
	glGenTextures(1, &textureID);

	int width, height, nrComponents;
	unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
	if (data)
	{
		GLenum format;
		if (nrComponents == 1)
			format = GL_RED;
		else if (nrComponents == 3)
			format = GL_RGB;
		else if (nrComponents == 4)
			format = GL_RGBA;

		glBindTexture(GL_TEXTURE_2D, textureID);
		glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

		stbi_image_free(data);
	}
	else
	{
		std::cout << "Texture failed to load at path: " << path << std::endl;
		stbi_image_free(data);
	}

	return textureID;
}

我们在场景中添加了平行光和手电筒

2018/8/19--OpenGL学习笔记(八)Mesh/Model

vertexshader:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;

out vec2 TexCoords;
out vec3 FragPos;
out vec3 Normal;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;  
    TexCoords = aTexCoords;
    gl_Position = projection * view * vec4(FragPos, 1.0);
}

fragmentshader:

#version 330 core
out vec4 FragColor;

in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;

struct Material {
    sampler2D texture_diffuse1;
    sampler2D texture_specular1;
    float shininess;
}; 
uniform Material material;

struct DirLight{
    vec3 direction;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};
uniform DirLight dirLight;

struct SpotLight {
    vec3 position;
    vec3 direction;
    float cutOff;
    float outerCutOff;
  
    float constant;
    float linear;
    float quadratic;
  
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;       
};
uniform SpotLight spotLight;

uniform vec3 viewPos;

vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);
vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir);

void main()
{
    // 属性
    vec3 normal = normalize(Normal);
    vec3 viewDir = normalize(viewPos - FragPos);

    // 第一阶段:定向光照
    vec3 result = CalcDirLight(dirLight, normal, viewDir);
 
    // 第三阶段:聚光
    result += CalcSpotLight(spotLight, normal, FragPos, viewDir);    

    FragColor = vec4(result, 1.0);
}

vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir)
{
    vec3 lightDir = normalize(-light.direction);
    // 漫反射着色
    float diff = max(dot(normal, lightDir), 0.0);
    // 镜面光着色
    vec3 reflectDir = reflect(-lightDir, normal);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    // 合并结果
    vec3 ambient  = light.ambient  * vec3(texture(material.texture_diffuse1, TexCoords));
    vec3 diffuse  = light.diffuse  * diff * vec3(texture(material.texture_diffuse1, TexCoords));
    vec3 specular = light.specular * spec * vec3(texture(material.texture_specular1, TexCoords));
    return (ambient + diffuse + specular);
}

vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 fragPos, vec3 viewDir)
{
    vec3 lightDir = normalize(light.position - fragPos);

    //diffuse
    float diff = max(dot(normal, lightDir), 0.0);

    //specular 
    vec3 reflectDir = reflect(-lightDir, normal);
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    
    // spotlight (soft edges)
    float theta = dot(lightDir, normalize(-light.direction)); 
    float epsilon = (light.cutOff - light.outerCutOff);
    float intensity = clamp((theta - light.outerCutOff) / epsilon, 0.0, 1.0);

    vec3 ambient = light.ambient * vec3(texture(material.texture_diffuse1, TexCoords));
    vec3 diffuse = light.diffuse * diff * vec3(texture(material.texture_diffuse1, TexCoords));
    vec3 specular = light.specular * spec * vec3(texture(material.texture_specular1, TexCoords));
    
    float distance = length(light.position - fragPos);
    float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); 
    
    ambient *= attenuation * intensity;
    diffuse *= attenuation * intensity;
    specular *= attenuation * intensity;
    return (ambient + diffuse + specular);
}


这章模型加载,我并没有写很多的东西,很多我也没有看很懂,也不是很想深入了解下,就差不多知道了流程,copy的源码,能够运行出来结果,再自己加上灯光,实现最后的效果。

上一篇:

下一篇: