欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

opencv-python教程学习系列7-opencv图像基本操作

程序员文章站 2023-12-23 19:01:57
...

前言

opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍图像的基本操作,坚持学习,共同进步。

系列教程参照OpenCV-Python中文教程

系统环境

系统:win7_x64;

python版本:python3.5.2;

opencv版本:opencv3.3.1;

内容安排

1.知识点介绍;

2.测试代码;

具体内容

1.知识点介绍;

使用的库包含cv2、numpy和matplotlib,包含修改图像像素、获取图像属性、提取ROI、拆分合并通道、图像填充等内容;

1.1 获取并修改图像像素;

1)读取一副图像,根据像素的行和列的坐标获取它的像素值,返回RGB的值,灰度图则返回灰度值;

px=img[100,100]#某坐标对应的像素值
print(px)
blue = img[100,100,0]#数字0表示选择BGR通道
print(blue)
img[101,101]=[235,255,255]
print(img[101,101])

2)numpy是经过优化了的进行快速矩阵运算的包,不推荐逐个获取像素值并修改,能矩阵运算就不要用循环。
建议使用numpy的array.item()和array.itemset()函数。但是返回是标量,如果想获得所有RGB的值,需要使用array.item()分割他们。

#numpy
print(img[10, 10])
print(img.item(10,10,2))
img.itemset((10,10,2),100)
print(img.item(10,10,2))

1.2 获取图像属性,包括行、列、通道数目、图像数据类型、像素数目等;

image.shape - 获取图像的形状,返回值是一个包含行数/列数/通道数的元组,如果图像是灰度图,返回值仅有行数和列数,

可通过检查返回值可以判断是灰度图还是彩色图;

image.size - 获取图像的像素数目;

img.dtype - 图像的数据类型,在debug时很重要,因为OpenCV-Python代码中经常出现数据类型的不一致;

print(img.dtype)

1.3 图像ROI,对图像的特定区域操作。ROI是使用numpy索引来获得的。要先知道图像尺寸,以及要移动的图像的像素坐标,可以使用matplotlib!!

ball =img[300:350,230:300]

1.4 拆分及合并图像通道,cv2.split()是比较耗时的操作,能用numpy就尽量使用。

r,g,b=cv2.split(img)#拆分
img=cv2.merge([r,g,b])#合并
b=img[:,:,0]#拆分b通道
img[:,:,2]=0#使用numpy索引使所有红色通道值都为0

1.5 图像扩边(填充),使用cv2.copyMakeBorder()函数。这经常在卷积运算或0填充时被用到;

具体的参数有输入图像、上下左右对应边界的像素数目、边界类型;

cv2.BORDER_CONSTANT添加有颜色的常数值边界,还需要下一个参数(value);
cv2.BORDER_REFLIECT边界元素的镜像。例如:fedcba | abcdefgh | hgfedcb;
cv2.BORDER_101或者cv2.BORDER_DEFAULT跟上面一样,但稍作改动,例如:gfedcb | abcdefgh | gfedcba;
cv2.BORDER_REPLICATE复后一个元素。例如: aaaaaa| abcdefgh|hhhhhhh;
cv2.BORDER_WRAP 不知怎么了, 就像样: cdefgh| abcdefgh|abcdefg;
value边界颜色;

blue = [0,0,255]#分别表示RGB通道;
constant = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_CONSTANT,value=blue)
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('constant')

2.测试代码;

import cv2
import numpy
img = cv2.imread('test.jpg')
px=img[100,100]#某坐标对应的像素值
print(px)
blue = img[100,100,0]#0表示BGR通道数
print(blue)
img[101,101]=[235,255,255]
print(img[101,101])

#numpy
print(img[10, 10])
print(img.item(10,10,2))
img.itemset((10,10,2),100)
print(img.item(10,10,2))

#获取图像属性(图像属性包括:行,列,通道,图像数据类型,像素数目等)
print(img.shape)#img.shape可以获得图像的形状,返回值是一个包含行数/列数/通道数的元组
#如果图像是灰度图,返回值仅有行数和列数,所以通过检查返回值可以判断是灰度图还是彩色图
#img.size可以返回图像的像素数目
print(img.size)
#img.dtype返回图像的数据类型,在debug时很重要,因为OpenCV-Python代码中经常出现数据类型的不一致
print(img.dtype)

#图像ROI,对图像的特定区域操作。ROI是使用numpy索引来获得的。
#要先知道图像尺寸,以及你要移动的图像的像素坐标,可以使用matplotlib!!
ball =img[300:350,230:300]
cv2.imshow('image',img)#显示图像
img[500:550,300:370]=ball
cv2.imshow('imageROI',img)#显示图像

#拆分及合并图像通道,cv2.split()是比较耗时的操作,能用numpy就尽量使用。
r,g,b=cv2.split(img)#拆分
img=cv2.merge([r,g,b])#合并
b=img[:,:,0]#拆分b通道
img[:,:,2]=0#使用numpy索引使所有红色通道值都为0

#图像扩边(填充)
#使用cv2.copyMakeBorder()函数。这经常在卷积运算或0填充时被用到;
from matplotlib import pyplot as plt
blue = [0,0,255]#分别表示RGB通道;
replicate = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_REFLECT101)
wrap = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_CONSTANT,value=blue)

plt.subplot(231),plt.imshow(img,'gray'),plt.title('original')
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('replicate')
plt.subplot(233),plt.imshow(reflect,'gray'),plt.title('reflect')
plt.subplot(234),plt.imshow(reflect101,'gray'),plt.title('reflect101')
plt.subplot(235),plt.imshow(wrap,'gray'),plt.title('wrap')
plt.subplot(236),plt.imshow(constant,'gray'),plt.title('constant')

plt.show()

测试结果显示

opencv-python教程学习系列7-opencv图像基本操作

参考

1. opencv图像基本操作

上一篇:

下一篇: