矩阵掩模操作
程序员文章站
2023-12-23 16:44:52
...
int main(int argc, char** argv)
{
Mat src, dst, dst1;
src = imread("111111.jpg", CV_LOAD_IMAGE_COLOR);
//两种检测图片是否存在的方式
/*if(src.empty())
{
printf("could not load image...\n");
return -1;
}*/
if (!src.data)
{
printf("could not load image...\n");
return -1;
}
namedWindow("input iamge", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
//返回系统从这里经过的毫秒数
double t1 = getTickCount();
//由于是3通道数,所以每个像素点要连续占用3个数组数值分别存储RGB3个通道
int cols = (src.cols - 1) * src.channels();
int offsetx = src.channels();
int rows = src.rows;
dst = Mat::zeros(src.size(), src.type());
for (int row = 1; row < (rows - 1); row++)
{
//获取行坐标的指针,ptr函数就是获取的对应值的指针
const uchar* previous = src.ptr<uchar>(row - 1);
const uchar* current = src.ptr<uchar>(row);
const uchar* next = src.ptr<uchar>(row + 1);
uchar* output = dst.ptr<uchar>(row);
for (int col = offsetx; col < cols; col++)
{
//进行逐点加权和的操作
//saturate_cast<uchar>对后面的值进行判定,>255的值赋值为255,<0的值赋值为0,在0~255之间的值数值不变
output[col] = saturate_cast<uchar>(5 * current[col] - (current[col - offsetx] + current[col + offsetx] + previous[col] + next[col]));
}
}
namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
imshow("contrast image demo", dst);
//获取像素操作的消耗时间
double timeconsume1 = (getTickCount() - t1) / getTickFrequency();
printf("tiome consume1 %.2f\n", timeconsume1);
double t2 = getTickCount();
//定义3*3的卷积掩模矩阵
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
//利用API函数借口直接进行卷积操作
filter2D(src, dst1, src.depth(), kernel);
double timeconsume = (getTickCount() - t2) / getTickFrequency();
printf("time consume %.2f\n", timeconsume);
namedWindow("contrast image demo1", CV_WINDOW_AUTOSIZE);
imshow("contrast image demo1", dst1);
//像素操作与API操作效果一致
waitKey(0);
return 0;
}
原图像:
逐像素操作结果:
API操作结果: