简单理解二分查找算法(基于java)
二分查找算法是什么
二分查找(binary search),也称折半搜索,又称折半查找,是一种在 有序数组 中 查找某一特定元素 的搜索算法,即,一种效率较高的查找方法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
可结合动态图理解
时间复杂度:折半搜索每次把搜索区域减少一半,时间复杂度为O(log n)。(n代表集合中元素的个数)
空间复杂度: O(1)。虽以递归形式定义,但是尾递归,可改写为循环。
二分算法步骤描述
① 首先确定整个查找区间的中间位置 mid = ( left + right )/ 2
② 用待查关键字值与中间位置的关键字值进行比较;
若相等,则查找成功
若大于,则在后(右)半个区域继续进行折半查找
若小于,则在前(左)半个区域继续进行折半查找
③ 对确定的缩小区域再按折半公式,重复上述步骤。
最后,得到结果:要么查找成功, 要么查找失败。折半查找的存储结构采用一维数组存放。 折半查找算法举例
对给定数列(有序){ 3,5,11,17,21,23,28,30,32,50,64,78,81,95,101},按折半查找算法,查找关键字值为81的数据元素。
java代码描述
递归
int binarysearch(int array[], int low, int high, int target) {
if (low > high) return -1;
int mid = low + (high - low) / 2;
if (array[mid] > target)
return binarysearch(array, low, mid - 1, target);
if (array[mid] < target)
return binarysearch(array, mid + 1, high, target);
return mid;
}
非递归
int bsearchWithoutRecursion(int a[], int key) {
int low = 0;
int high = a.length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (a[mid] > key)
high = mid - 1;
else if (a[mid] < key)
low = mid + 1;
else
return mid;
}
return -1;
}
二分查找中值的计算
这是一个经典的话题,如何计算二分查找中的中值?大家一般给出了两种计算方法:
算法一: mid = (low + high) / 2
算法二: mid = low + (high – low)/2
乍看起来,算法一简洁,算法二提取之后,跟算法一没有什么区别。但是实际上,区别是存在的。算法一的做法,在极端情况下,(low + high)存在着溢出的风险,进而得到错误的mid结果,导致程序错误。而算法二能够保证计算出来的mid,一定大于low,小于high,不存在溢出的问题。
二分查找算法讨论:
优点:
ASL≤log2n,即每经过一次比较,查找范围就缩小一半。经log2n 次计较就可以完成查找过程。
缺点:
在它的限定之上:必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组。数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。
解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,既能高效的(O(n log
n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。
另外,顺序存储结构的插入、删除操作不便利。
思考:
(顺序查找和折半查找)结合起来,即分块查找的算法思想。如下
public class BinarySearch {
/**
* 二分查找算法
* @param srcArray 有序数组
* @param key 查找元素
* @return key的数组下标,没找到返回-1
*/
public static void main(String[] args) {
int srcArray[] = {3,5,11,17,21,23,28,30,32,50,64,78,81,95,101};
System.out.println(binSearch(srcArray, 0, srcArray.length - 1, 81));
}
// 二分查找递归实现
public static int binSearch(int srcArray[], int start, int end, int key) {
int mid = (end - start) / 2 + start;
if (srcArray[mid] == key) {
return mid;
}
if (start >= end) {
return -1;
} else if (key > srcArray[mid]) {
return binSearch(srcArray, mid + 1, end, key);
} else if (key < srcArray[mid]) {
return binSearch(srcArray, start, mid - 1, key);
}
return -1;
}
// 二分查找普通循环实现
public static int binSearch(int srcArray[], int key) {
int mid = srcArray.length / 2;
if (key == srcArray[mid]) {
return mid;
}
int start = 0;
int end = srcArray.length - 1;
while (start <= end) {
mid = (end - start) / 2 + start;
if (key < srcArray[mid]) {
end = mid - 1;
} else if (key > srcArray[mid]) {
start = mid + 1;
} else {
return mid;
}
}
return -1;
}
}