欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

WWW2020推荐系统论文合集(已分类整理,并提供下载)

程序员文章站 2023-12-21 19:00:52
...

文章来源于机器学习与推荐算法,作者张小磊

 1   摘要

国际*学术会议WWW2020定在2020年4月20-24日中国*举办。受COVID-19疫情影响(疫情赶紧过去吧),大会将在线上举行。今天是大会开始的第一天。

本次会议共收到了1129篇论文投稿,录用217篇,录取率仅为19.2%。其中关于推荐系统的论文大约38篇,推荐系统占比17.5%,可见推荐系统的研究受到学术界的广泛关注。另外,值得注意的是,接收的推荐系统论文中大部分都是与工业界合作的产物,因此不管是学术界还是工业界,推荐系统都是研究的热点与重点。

针对这38篇论文,我们进行了梳理分类,如下表所示

分类 数量
Practical RS 6
Sequential RS 6
Efficient RS
4
Social RS 3
General RS
3
RL for RS
3
POI RS
2
Cold Start in RS
2
Security RS
2
Fairness RS
2
Explianability for RS
2
Cross-domain RS
1
Knowledge Graph RS
1
Conversational RS 1
CTR for RS
1

可见,推荐系统应用的文章以及序列化推荐的文章占比较大;随后是提升推荐效率、社会化推荐、常规推荐以及利用强化学习推荐;其次是兴趣点推荐、冷启动问题研究、推荐系统中的安全性、推荐公平性以及可解释推荐的文章;最后是各有一篇跨域推荐、利用知识图推荐、对话推荐系统以及用于点击率预估的推荐。

 2   论文列表

1

Practical RS

  • Graph Enhanced Representation Learning for News Recommendation

  • Weakly Supervised Attention for Hashtag Recommendation using Graph Data

  • Personalized Employee Training Course Recommendation with Career Development Awareness

  • Understanding User Behavior For Document Recommendation

  • Recommending Themes for Ad Creative Design via Visual-Linguistic Representations

  • paper2repo: GitHub Repository Recommendation for Academic Papers

2

Sequential RS

  • Adaptive Hierarchical Translation-based Sequential Recommendation

  • Attentive Sequential Model of Latent Intent for Next Item Recommendation

  • Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation

  • Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation

  • Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation

  • Keywords Generation Improves E-Commerce Session-based Recommendation

3

Efficient RS

  • Learning to Hash with Graph Neural Networks for Recommender Systems

  • LightRec: a Memory and Search-Efficient Recommender System

  • A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting User Preferences in Recommender Systems

  • Efficient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation

4

Social RS

  • Clustering and Constructing User Coresets to Accelerate Large-scale Top-K Recommender Systems

  • The Structure of Social Influence in Recommender Networks

  • Few-Shot Learning for New User Recommendation in Location-based Social Networks

5

Explainability for RS

  • Directional and Explainable Serendipity Recommendation

  • Dual Learning for Explainable Recommendation: Towards Unifying User Preference Prediction and Review Generation

6

POI RS

  • Next Point-of-Interest Recommendation on Resource-Constrained Mobile Devices

  • A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data

7

General RS

  • Efficient Neural Interaction Function Search for Collaborative Filtering

  • Learning the Structure of Auto-Encoding Recommenders

  • Deep Global and Local Generative Model for Recommendation

8

Fairness in RS

  • Hierarchical Visual-aware Minimax Ranking Based on Co-purchase Data for Personalized Recommendation

  • FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms

9

RL for RS

  • Off-policy Learning in Two-stage Recommender Systems

  • Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation

10

Cross-domain RS

  • Exploiting Aesthetic Preference in Deep Cross Networks for Cross-domain Recommendation

11

Knowledge Graph RS

  • Reinforced Negative Sampling over Knowledge Graph for Recommendation

12

Conversational RS

  • Latent Linear Critiquing for Conversational Recommender Systems

13

CTR for RS

  • Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

 3   官方Tutorial

最后,WWW2020还进行了两场关于推荐与搜索的Tutorial,分别是利用深度迁移学习的搜索与推荐和可信任的推荐与搜索系统,感兴趣的小伙伴可以学习一下。

WWW2020推荐系统论文合集(已分类整理,并提供下载)

WWW2020推荐系统论文合集(已分类整理,并提供下载)


获取以上WWW2020推荐系统论文,请关注机器学习与推荐算法公众号后台回复【0420】即可。

WWW2020推荐系统论文合集(已分类整理,并提供下载)

往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习在线手册深度学习在线手册AI基础下载(pdf更新到25集)本站qq群1003271085,加入微信群请回复“加群”获取一折本站知识星球优惠券,复制链接直接打开:https://t.zsxq.com/yFQV7am喜欢文章,点个在看

上一篇:

下一篇: