Python Descriptor描述符
最近看了http://www.iteye.com/wiki/Python/1362-python-39-s-descriptor这位老兄写的关于Python描述符的文章,觉得他写的也过于繁杂。所以不妨自己也小试一把。
在Python中,访问一个属性的优先级顺序按照如下顺序:
1:类属性
2:数据描述符
3:实例属性
4:非数据描述符
5:__getattr__()方法 这个方法的完整定义如下所示:
def __getattr(self,attr) :#attr是self的一个属性名
pass;
先来阐述下什么叫数据描述符。
数据描述符是指实现了__get__,__set__,__del__方法的类属性(由于Python中,一切皆是对象,所以你不妨把所有的属性也看成是对象)
PS:个人觉得这里最好把数据描述符等效于定义了__get__,__set__,__del__三个方法的接口。
阐述下这三个方法:
__get__的标准定义是__get__(self,obj,type=None),它非常接近于JavaBean的get
第一个函数是调用它的实例,obj是指去访问属性所在的方法,最后一个type是一个可选参数,通常为None(这个有待于进一步的研究)
例如给定类X和实例x,调用x.foo,等效于调用:
type(x).__dict__['foo'].__get__(x,type(x))
调用X.foo,等效于调用:
type(x).__dict__['foo'].__get__(None,type(x))
第二个函数__set__的标准定义是__set__(self,obj,val),它非常接近于JavaBean的set方法,其中最后一个参数是要赋予的值
第三个函数__del__的标准定义是__del__(self,obj),它非常接近Java中Object的Finailize()方法,指Python在回收这个垃圾对象时所调用到的析构函数,只是这个函数永远不会抛出异常。因为这个对象已经没有引用指向它,抛出异常没有任何意义。
接下来,我们来一一比较这些优先级.
首先来看类属性
class A(object):
foo=1.3;
print str(A.__dict__);
输出:
{'__dict__': <attribute '__dict__' of 'A' objects>, '__module__': '__main__',
'foo': 1.3, '__weakref__': <attribute '__weakref__' of 'A' objects>, '__doc__': None}
从上图可以看出foo属性在类的__dict__属性里,所以这里用A.foo可以直接找到。这里我们先跨过数据描述符,直接来看实例属性.
class A(object):
foo=1.3;
a=A();
print a.foo;
a.foo=15;
print a.foo;
这里a.foo先输出1.3后输出15,不是说类属性的优先级比实例属性的优先级高吗?按理a.foo应该不变才对?其实,这里只是一个假象,真正的原因在于这里将a.foo这个引用对象,不妨将其理解为可以指向任意数据类型的指针,指向了15这个int对象。
不信,可以继续看:
class A(object):
foo=1.3;
a=A();
print a.foo;
a.foo=15;
print a.foo;
del a.foo;
print a.foo;
这次在输出1.3,15后最后一次又一次的输出了1.3,原因在于a.foo最后一次又按照优先级顺序直接找到了类属性A.foo
然后我们来看下数据描述符这一全新的语言概念。按照之前的定义,一个实现了__get__,__set__,__del__的类都统称为数据描述符。我们来看下一个简单的例子.
class simpleDescriptor(object):
def __get__(self,obj,type=None) :
pass;
def __set__(self,obj,val):
pass;
def __del__(self,obj):
pass
class A(object):
foo=simpleDescriptor();
print str(A.__dict__);
print A.foo;
a=A();
print a.foo;
a.foo=13;
print a.foo;
这里get,set,del方法体内容都略过,虽然简单,但也不失为一个数据描述符。让我们来看下它的输出:
{'__dict__': <attribute '__dict__' of 'A' objects>, '__module__': '__main__',
'foo': <__main__.simpleDescriptor object at 0x00C46930>,
'__weakref__': <attribute '__weakref__' of 'A' objects>,
'__doc__': None}
None
None
None
从上图可以看出,尽管我们对a.foo赋值了,但其依然为None,原因就在于__get__方法什么都不返回。
为了更进一步的加深对数据描述符的理解,我们简单的作下改造.
class simpleDescriptor(object):
def __init__(self):
self.result=None;
def __get__(self,obj,type=None) :
return self.result-10;
def __set__(self,obj,val):
self.result=val+3;
print self.result;
def __del__(self,obj):
pass
class A(object):
foo=simpleDescriptor();
a=A();
a.foo=13;
print a.foo;
打印的输出结果为:
16
6
第一个16为我们在对a.foo赋值的时候,人为的将13加上3后作为foo的值,第二个6是我们在返回a.foo之前人为的将它减去了10。
所以我们可以猜测,常规的Python类在定义get,set方法的时候,如果无特殊需求,直接给对应的属性赋值或直接返回该属性值。如果自己定义类,并且继承object类的话,这几个方法都不用定义。
下面我们来看下实例属性和非数据描述符。
class B(object):
foo=1.3;
b=B();
print b.__dict__
#print b.bar;
b.bar=13;
print b.__dict__
print b.bar;
输出结果为:
{}
{'bar': 13}
13
可见这里在实例b.__dict__里找到了bar属性,所以这次可以获取13了
那么什么是非数据描述符呢?简单的说,就是没有实现get,set,del三个方法的所有类
让我们任意看一个函数的描述:
def hello():
pass
print dir(hello)
输出:
['__call__', '__class__', '__delattr__', '__dict__',
'__doc__',
'__get__',
'__getattribute__',
'__hash__', '__init__', '__module__', '__name__',
'__new__', '__reduce__',
'__reduce_ex__', '__repr__',
'__setattr__', '__str__', 'func_closure',
'func_code',
'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']
从上面可以看出所有的函数都有get方法,但都没有set和del方法,所以所有的类成员函数都是非数据描述符。
看一个简单的例子:
class simpleDescriptor(object):
def __get__(self,obj,type=None) :
return 'get',self,obj,type;
class D(object):
foo=simpleDescriptor();
d=D();
print d.foo;
d.foo=15;
print d.foo;
输出:
('get', <__main__.simpleDescriptor object at 0x00C46870>,
<__main__.D object at 0x00C46890>, <class '__main__.D'>)
15
可以看出实例属性掩盖了非数据描述符。
最后看下__getatrr__方法。它的标准定义是:__getattr__(self,attr),其中attr是属性名
让我们来看一个简单的例子:
class D(object):
def __getattr__(self,attr):
return attr;
#return self.attr;
d=D();
print d.foo,type(d.foo);
d.foo=15;
print d.foo;
输出:
foo <type 'str'>
15
可以看的出来Python在实在找不到方法的时候,就会求助于__getattr__方法。
注意这里要避免无意识的递归,稍微改动下:
class D(object):
def __getattr__(self,attr):
#return attr;
return self.attr;
d=D();
print d.foo,type(d.foo);
d.foo=15;
print d.foo;
这次会直接抛出堆栈溢出的异常,就像下面这样:
RuntimeError: maximum recursion depth exceeded
花了2天,终于写完了,不过感觉貌似比那位老兄还要写的啰嗦,呵呵~~ 还请各位看官多多包涵~