C#计算矩阵的秩实例分析
程序员文章站
2023-12-04 23:13:52
本文实例讲述了c#计算矩阵的秩的方法。分享给大家供大家参考。具体如下:
1.代码思路
计算矩阵的秩,即把矩阵进行行初等变换,得出的行最简矩阵的非零行数。过程如下
1)...
本文实例讲述了c#计算矩阵的秩的方法。分享给大家供大家参考。具体如下:
1.代码思路
计算矩阵的秩,即把矩阵进行行初等变换,得出的行最简矩阵的非零行数。过程如下
1)将矩阵各行按第一个非零元素出现的位置升序排列(operation1函数)
2)查看矩阵是否为行最简矩阵(isfinished函数),是则到第6步,不是则到第3步
3)如果有两行第一个非零元素出现的位置相同,则做消法变换,让下面行的第一个非零元素位置后移(operation2函数)
4)将矩阵各行按第一个非零元素出现的位置升序排列(operation1函数)
5)返回第2步
6)判断误差,对趋近与0的元素(如1e-5)按0处理,以免在第7步误判(operation3函数)
7)统计非零行的数目(operation4函数),即为矩阵的秩
2.函数代码
(注:本段代码只实现了一个思路,可能并不是该问题的最优解)
/// <summary> /// 计算矩阵的秩 /// </summary> /// <param name="matrix">矩阵</param> /// <returns></returns> private static int rank(double[][] matrix) { //matrix为空则直接默认已经是最简形式 if (matrix == null || matrix.length == 0) return 0; //复制一个matrix到copy,之后因计算需要改动矩阵时并不改动matrix本身 double[][] copy = new double[matrix.length][]; for (int i = 0; i < copy.length; i++) { copy[i] = new double[matrix[i].length]; } for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[0].length; j++) { copy[i][j] = matrix[i][j]; } } //先以最左侧非零项的位置进行行排序 operation1(copy); //循环化简矩阵 while (!isfinished(copy)) { operation2(copy); operation1(copy); } //过于趋近0的项,视作0,减小误差 operation3(copy); //行最简矩阵的秩即为所求 return operation4(matrix); } /// <summary> /// 判断矩阵是否变换到最简形式(非零行数达到最少) /// </summary> /// <param name="matrix"></param> /// <returns>true:</returns> private static bool isfinished(double[][] matrix) { //统计每行第一个非零元素的出现位置 int[] counter = new int[matrix.length]; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { if (matrix[i][j] == 0) { counter[i]++; } else break; } } //后面行的非零元素出现位置必须在前面行的后面,全零行除外 for (int i = 1; i < counter.length; i++) { if (counter[i] <= counter[i - 1] && counter[i] != matrix[0].length) { return false; } } return true; } /// <summary> /// 排序(按左侧最前非零位位置自上而下升序排列) /// </summary> /// <param name="matrix">矩阵</param> private static void operation1(double[][] matrix) { //统计每行第一个非零元素的出现位置 int[] counter = new int[matrix.length]; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { if (matrix[i][j] == 0) { counter[i]++; } else break; } } //按每行非零元素的出现位置升序排列 for (int i = 0; i < counter.length; i++) { for (int j = i; j < counter.length; j++) { if(counter[i]>counter[j]) { double[] dtemp = matrix[i]; matrix[i] = matrix[j]; matrix[j] = dtemp; } } } } /// <summary> /// 行初等变换(左侧最前非零位位置最靠前的行,只保留一个) /// </summary> /// <param name="matrix">矩阵</param> private static void operation2(double[][] matrix) { //统计每行第一个非零元素的出现位置 int[] counter = new int[matrix.length]; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[i].length; j++) { if (matrix[i][j] == 0) { counter[i]++; } else break; } } for (int i = 1; i < counter.length; i++) { if (counter[i] == counter[i - 1] && counter[i] != matrix[0].length) { double a = matrix[i - 1][counter[i - 1]]; double b = matrix[i][counter[i]]; //counter[i]==counter[i-1] matrix[i][counter[i]] = 0; for (int j = counter[i] + 1; j < matrix[i].length; j++) { double c = matrix[i - 1][j]; matrix[i][j] -= (c * b / a); } break; } } } /// <summary> /// 将和0非常接近的数字视为0 /// </summary> /// <param name="matrix"></param> private static void operation3(double[][] matrix) { for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[0].length; j++) { if (math.abs(matrix[i][j]) <= 0.00001) { matrix[i][j] = 0; } } } } /// <summary> /// 计算行最简矩阵的秩 /// </summary> /// <param name="matrix"></param> /// <returns></returns> private static int operation4(double[][] matrix) { int rank = -1; bool isallzero = true; for (int i = 0; i < matrix.length; i++) { isallzero = true; //查看当前行有没有0 for (int j = 0; j < matrix[0].length; j++) { if (matrix[i][j] != 0) { isallzero = false; break; } } //若第i行全为0,则矩阵的秩为i if (isallzero) { rank = i; break; } } //满秩矩阵的情况 if (rank == -1) { rank = matrix.length; } return rank; }
3.main函数调用
static void main(string[] args) { //示例矩阵1:秩为3 double[][] matrix1 = new double[][] { new double[] { 1, 1, 1 }, new double[] { 1, 1, 0 }, new double[] { 0, 1, 1 } }; console.writeline(rank(matrix1)); //示例矩阵2:秩为3 double[][] matrix2 = new double[][] { new double[] { 3, 2, 0, 5, 0 }, new double[] { 3, -2, 3, 6, -1 }, new double[] { 2, 0, 1, 5, -3 }, new double[] { 1, 6, -4, -1, 4 } }; console.writeline(rank(matrix2)); //示例矩阵3:秩为3 double[][] matrix3 = new double[][] { new double[] { 2, 3, 1, -3, -7 }, new double[] { 1, 2, 0, -2, -4 }, new double[] { 3, -2, 8, 3, 0 }, new double[] { 2, -3, 7, 4, 3 } }; console.writeline(rank(matrix3)); console.readline(); }
4.执行结果
希望本文所述对大家的c#程序设计有所帮助。
上一篇: MS SQL Server数据库清理错误日志的方法
下一篇: 简单谈谈PHP中strlen 函数