欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

CNN实现手写数字识别并改变参数进行分析

程序员文章站 2022-03-17 14:21:52
...

1.网络层级结构概述

Input layer: 输入数据为原始训练图像
Conv1:6 个 5 * 5 的卷积核,步长 Stride 为 1
Pooling1:卷积核 size 为 2 * 2,步长 Stride 为 2
Conv2:12 个 5 * 5 的卷积核,步长 Stride 为 1
Pooling2:卷积核 size 为 2 * 2,步长 Stride 为 2
Output layer:输出为 10 维向量

2.实验基本流程

(1)获取训练数据和测试数据

直接使用keras里面的手写数据集

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

(2)定义网络层级结构

代码:

def get_model():
    model = Sequential()
    model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))
    model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
    model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
    model.add(Flatten())
    #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))
    model.add(Dense(120, activation='relu'))
    model.add(Dense(84, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    # 编译模型,采用多分类的损失函数,优化器是Adadelta
    model.compile(loss='categorical_crossentropy',
                  optimizer='Adadelta',
                  metrics=['accuracy'])
    
    return model

(3)交叉验证

直接附上代码

def k_cross(data,target,bsize,epoch,sp):
    print("------进行交叉验证------")
    ans=0 #交叉验证正确率的和
    kf = KFold(n_splits=sp, shuffle = True)
    for train, test in kf.split(data):
        model.fit(data[train], target[train],
              batch_size=bsize,
              epochs=epoch,
              verbose=0,
              validation_data=(data[test], target[test]))
        score = model.evaluate(data[test], target[test], verbose=0)
        ans+=score[1]
    return ans/sp

3完整代码

我这里直接就3折了,太多了运行时间太长。
最后完整代码:

# -*- coding: utf-8 -*-
"""
Created on Tue Dec 10 15:42:27 2019

@author: pff
"""

from __future__ import print_function
import numpy as np
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from sklearn.model_selection import KFold
import matplotlib.pyplot as plt
def getdata():
    #提取出训练集和测试集
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
    x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
    # 采用one-hot编码
    y_train = keras.utils.to_categorical(y_train, 10)
    y_test = keras.utils.to_categorical(y_test, 10)
    #将测试集和训练集合并,便于后面交叉验证
    data = np.row_stack((x_train,x_test))
    target = np.row_stack((y_train,y_test))
    return data, target

# 构建模型
def get_model():
    model = Sequential()
    model.add(Conv2D(filters=6, kernel_size=(5, 5),strides=1,activation='relu',input_shape=(28, 28, 1)))
    model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
    model.add(Conv2D(filters=12, kernel_size=(5, 5),strides=1,activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
    model.add(Flatten())
    #model.add(Conv2D(filters=120, kernel_size=(5, 5),activation='relu'))
    model.add(Dense(120, activation='relu'))
    model.add(Dense(84, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(10, activation='softmax'))
    
    # 编译模型,采用多分类的损失函数,用 Adadelta 算法做优化方法
    model.compile(loss='categorical_crossentropy',
                  optimizer='Adadelta',
                  metrics=['accuracy'])
    
    return model

def kcross(data,target,bsize,epoch,sp):
    print("------进行交叉验证------")
    ans=0
    kf = KFold(n_splits=sp, shuffle = True)
    for train, test in kf.split(data):
        #print("第{}次开始".format(i+1))
        model.fit(data[train], target[train],
              batch_size=bsize,
              epochs=epoch,
              verbose=0,
              validation_data=(data[test], target[test]))
        
        score = model.evaluate(data[test], target[test], verbose=0)
        ans+=score[1]
    return ans/sp
#画结果图
def draw(batch_size,y,epoch):
    plt.figure()
    plt.rcParams['font.sans-serif']='SimHei'
    plt.ylabel('正确率')
    plt.xlabel('batch_size')
    plt.title('不同参数下卷积神经网络数字识别图')
    for i in range(len(y)):
        plt.scatter(batch_size, y[i], s=30, c='r', marker='x', linewidths=1)
        plt.plot(batch_size,y[i],label="epoch:"+str(epoch[i]))
    plt.legend()
    plt.show()


if __name__=="__main__":
    data,target=getdata()
    model=get_model()
    '''
    设置epoch和baitch_size参数
    y:存储每一次的结果
    '''
    epoch=[1,3,5,7] 
    size=[50,100,150,200,250]
    y=np.zeros([4,5])
    
    for i in range(len(epoch)):
        for j in range(len(size)):
            print("now:",i,j)
            y[i,j]=kcross(data,target,size[j],epoch[i],3)
    draw(size,y,epoch)

4运行结果

CNN实现手写数字识别并改变参数进行分析

相关标签: 神经网络 卷积