欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

使用OpenCV实现仿射变换—缩放功能

程序员文章站 2023-11-29 18:59:52
前面介绍怎么样实现平移的功能,接着下来演示缩放功能。比如在一个文档里插入一个图片,发现这个图片占用太大的面积了,要把它缩小,才放得下,与文字的比例才合适。这样的需求,就需要...

前面介绍怎么样实现平移的功能,接着下来演示缩放功能。比如在一个文档里插入一个图片,发现这个图片占用太大的面积了,要把它缩小,才放得下,与文字的比例才合适。这样的需求,就需要使用仿射变换的缩放功能,而实现这个功能的方法,就是采用齐次坐标的变换功式:

使用OpenCV实现仿射变换—缩放功能

可看到最后一条公式,就是缩放公式,要实现二维图像的缩放,需要构造前面那个缩放矩阵,因此在opencv也是构造一个2x3的矩阵。不过,在缩放变换里,要考虑另外一个问题,比如图片放大之后,原来两点像素的距离变大了,在中间留下了空间,那么中间空白的像素点怎么样处理呢?其实图像处理要完成两个独立的算法计算,首先需要一个算法实现空间坐标变换,用它描述每个像素如何从初始位置移动到终止位置。其次需要一个插值算法完成输出图像的每个像素的颜色值。在放大或缩小里,就需要计算像素的颜色值了,就需要使用插值算法。不过插值算法也是五花百门的,最简单的方法就是向邻近元素借用它们的值,比如放大之后原来元素坐标为1和3了,留下坐标2的点为空,那么2的点就可以借用1或3点的颜色值,在opencv里就可以使用cv.inter_nearest标志表示这个意思。有时候中间留下的点很多,如果全部取一个点的颜色值,就会在图形上出现一片相同的颜色值,让图片不好看。为了解决这个问题,向更好的插值算法推广,接着引入双线性插值(cv.inter_linear),这个插值算法使用了附近四个点的颜色值来计算,这样就不是单独考虑一个元素的值了,这样就比只取一个点的值好很多,因此也成为opencv里仿射函数里默认的值。如果要更好的插值,还有很多更高级的三次样条插值等等,不过计算量也上去了。

下面通过例子来演示缩放的操作:

#python 3.7.4,opencv4.1
#蔡军生 https://blog.csdn.net/caimouse/article/details/51749579
#
import cv2
import numpy as np
 
#图片的路径
imgname = "img1.jpg"
 
#读取图片
image = cv2.imread(imgname, cv2.imread_color)
 
#图片的高度和宽度
h,w = image.shape[:2]
 
#构造缩放的2x3的矩阵,然后调用warpaffine执行缩放
a1 = np.array([[0.5, 0, 0], [0, 0.5, 0]], np.float32)
d1 = cv2.warpaffine(image, a1, (w, h), bordervalue = 125)
 
#显示操作之后的图片
cv2.imshow("d1",d1)
 
#显示图像
cv2.imshow("image", image)
 
#等待用户输入,然后删除所有窗口
cv2.waitkey(0)
cv2.destroyallwindows()

输出结果如下:

使用OpenCV实现仿射变换—缩放功能

左图是x轴和y轴都缩小一半的图片,右边是原图。

在这个例子里与平移不一样的,就是矩阵的变化:

np.array([[0.5, 0, 0], [0, 0.5, 0]], np.float32)

就是矩阵对角线上的值发生了变化,如果要放大就是变为大于1的值。

总结

以上所述是小编给大家介绍的使用opencv实现仿射变换—缩放功能,希望对大家有所帮助