lesson-05-Logistic-Regression
程序员文章站
2022-03-17 14:15:03
...
import torch as tt
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
tt.manual_seed(10)
<torch._C.Generator at 0x6858f10>
机器学习模型训练步骤
迭代训练
- 数据
- 模型
- loss_fn
- optimizer
# step 1/5 生成数据
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = tt.ones(sample_nums, 2)
x0 = tt.normal(mean_value * n_data, 1) + bias
# class 0 data shape(100,2)
y0 = tt.zeros(sample_nums)
# 类别0 标签 shape=(100, 1)
x1 = tt.normal(-mean_value * n_data, 1) + bias
# 类别1 数据 shape=(100, 2)
y1 = tt.ones(sample_nums)
# 类别1 标签 shape=(100, 1)
train_x = tt.cat((x0, x1), 0)
train_y = tt.cat((y0, y1), 0)
# step 2/5 选择模型
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.features = nn.Linear(2,1)# y = f(wx + b)
self.sig = nn.Sigmoid()# f(x) = 1/(1+exp(-x))
def forward(self, x):
x = self.features(x)
x = self.sig(x)
return x
lr_net = LR()
# step 3/5 选择损失函数
loss_fn = nn.BCELoss()
# step 4/5 选择优化器
lr = 0.01 # learning rate
optimizer = tt.optim.SGD(lr_net.parameters(), lr = lr, momentum = 0.9)
# step 5/5 模型训练
epoch = 1000
for iteration in range(epoch):
# forward
y_pred = lr_net(train_x)
# calculate loss
loss = loss_fn(y_pred.squeeze(), train_y)
# backward
loss.backward()
# update parameters
optimizer.step()
# clear gradient
optimizer.zero_grad()
# plot
if iteration % 50 ==0:
mask = y_pred.ge(0.5).float().squeeze()
# classify with threshold == 0.5
correct = (mask == train_y).sum()
# calculate correct number
acc = correct.item() / train_y.size(0)
# calculate accuracy
plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')
w0, w1 = lr_net.features.weight[0]
w0, w1 = float(w0.item()), float(w1.item())
plot_b = float(lr_net.features.bias[0].item())
plot_x = np.arange(-6, 6, 0.1)
plot_y = (-w0 * plot_x - plot_b) / w1
plt.xlim(-5, 7)
plt.ylim(-7, 7)
plt.plot(plot_x, plot_y)
plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
plt.legend()
plt.show()
plt.pause(0.5)
if acc > 0.99:
break
上一篇: 联想小新air15恢复出厂设置的方法
下一篇: 苹果股价开盘大跌:市值降至全球第四