欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python代码实现求解最值问题的模拟退火

程序员文章站 2023-11-29 11:13:10
基于python求解一元最值问题的模拟退火给出一元最值问题的模拟退火python代码,多元最值问题适当修改即可:问题描述:求解函数y=11sin(x)+7cos(5x)在[-3,3]内的最大值!# --utf-8--# author: 来瓶安慕嘻# time:2020-7-2# 模拟退火import pandas as pdfrom matplotlib import pyplot as pltimport numpy as npimport mathimport randomd...

基于python求解一元最值问题的模拟退火

给出一元最值问题的模拟退火python代码,多元最值问题适当修改即可:
问题描述:求解函数y=11sin(x)+7cos(5x)在[-3,3]内的最大值!

# --utf-8--
# author: 来瓶安慕嘻
# time:2020-7-2
# 模拟退火

import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
import math
import random

def sa():
    '''初始化参数'''
    T0 = 100 
    T = T0 
    maxgen = 300 
    Lk = 100 
    alfa = 0.95 
    x_lb = -3 
    x_ub = 3 


    '''初始化x0,y0'''
    x0 = x_lb+(x_ub-x_lb)*random.random()

    # 初始化iter_x和iter_y,用来储存每一次的y值和x值,用来最后搜寻最大值和最小值
    iter_x = [x0]
    iter_y = [cal_y(x0)]

    '''==========================
    开始模拟退火啦
    =============================
    '''
    for i in range(maxgen):
        for j in range(Lk):
            y0 = cal_y(x0)
            y = np.random.randn(1)
            x_new = x0+y*T
            if x_new < x_lb:
                r = random.random()
                x_new= r*x_lb+(1-r)*x0
            elif x_new > x_ub:
                r = random.random()
                x_new= r*x_ub+(1-r)*x0
            x1 = x_new
            y1 = cal_y(x1)
            if y1>y0:
                x0 = x1
                iter_x.append(x1)
                iter_y.append(y1)
            else:
                p = math.exp(-(y0-y1)/T)
                if random.random() < p:
                    x0 = x1
        T = alfa*T


    best_y = max(iter_y)
    best_x = float(iter_x[iter_y.index(best_y)])
    print('最佳的位置为:',np.round(best_x,4))
    print('对应的最优值为:',np.round(best_y,4))

def cal_y(x):
    y = 11 * math.sin(x) + 7 * math.cos(5 * x)
    return y


if __name__ == '__main__':
    sa()

本文地址:https://blog.csdn.net/stephen_curry300/article/details/107092190