欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对python程序内存泄漏调试的记录

程序员文章站 2023-11-28 20:50:22
问题描述 调试python程序时,用下面这段代码,可以获得进程占用系统内存值。程序跑一段时间后,就能画出进程对内存的占用情况。 def memory_usage...

问题描述

调试python程序时,用下面这段代码,可以获得进程占用系统内存值。程序跑一段时间后,就能画出进程对内存的占用情况。

def memory_usage_psutil():
 # return the memory usage in mb
 import psutil,os
 process = psutil.process(os.getpid())
 mem = process.memory_info()[0] / float(2 ** 20)
 return mem

发现进程的内存占用一直再上涨,而这从逻辑上来说是不正常的,所以想到程序可能发生了memory leak。

python程序的mem leak

python程序不可能像c/c++一样出现malloc了的内存没有free这样的memory leak。但也会遇到“逻辑上没free”的情况,如下代码所示。

def foo(a=[]):
 a.append(time.time())
 return a

参数a这样可迭代的对象,稍不注意,它就能增长的很快。说白了,python的memory leak,就是“进程占用的内存莫名其妙一直再升高”。进程占用内存一直升高,与逻辑预期不一致,就可能发生了memory leak。

以下面程序为例说明memory leak调试的过程:

def memory_usage_psutil():
 # return the memory usage in mb
 import psutil,os
 process = psutil.process(os.getpid())
 mem = process.memory_info()[0] / float(2 ** 20)
 return mem

def get_current_obj(a=[]):
 a.append([0]*1000)
 return a

def main(): 
 obj = []
 for i in range(10000):
 obj = get_current_obj(obj)
 if(i%100==0):
  print(memory_usage_psutil())

if __name__=='__main__':
 main()

调试过程

用pmap -x [pid]查看进程占用的堆内存大小

首先想到,会不会是上面用的memory_usage_psutil函数统计错误呢。

先运行程序,再用pmap查看,发现进程内存占用确实很高。多次执行该命令,也可以发现内存一直升高。

对python程序内存泄漏调试的记录

强制执行gc(gc.collect())

在需要执行gc的地方加上gc.collect()

def main(): 
 obj = []
 for i in range(10000):
 obj = get_current_obj(obj)
 import gc;gc.collect()
 if(i%100==0):
  print(memory_usage_psutil())

可以看到,强制gc后,程序执行变慢,但内存依然不断升高。

使用memory_profiler查看

安装memory_profiler

pip install -u memory_profiler

用@profile修饰需要查看内存的函数

@profile
def main(): 
 obj = []
 for i in range(10000):
 obj = get_current_obj(obj)
 if(i%100==0):
  print(memory_usage_psutil())

用如下命令运行程序

python -m memory_profiler main.py

可以看到程序执行完成后,输出结果如下

line # mem usage increment line contents
================================================
 12 28.570 mib 0.000 mib @profile
 13    def main():
 14 28.570 mib 0.000 mib obj = []
 15 106.203 mib 77.633 mib for i in range(10000):
 16 106.203 mib 0.000 mib  obj = get_current_obj(obj)
 17 106.203 mib 0.000 mib  if(i%100==0):
 18 105.445 mib -0.758 mib  print(memory_usage_psutil())

这样就能看到导致内存上涨最快的那几行代码。

用guppy查看python对象占用的堆内存大小

将main修改如下,即可查看python对堆内存的占用量。

def main(): 
 obj = []
 for i in range(10000):
 obj = get_current_obj(obj)
 if(i%100==0):
  print(memory_usage_psutil())
  from guppy import hpy;hxx = hpy();heap = hxx.heap()
  print(heap)

下面就是输出结果,python程序中各个对象对内存的占用从大到小排列。

 index count % size % cumulative % kind (class / dict of class)
 0 10124 22 81944416 95 81944416 95 list
 1 16056 34 1325464 2 83269880 96 str
 2 9147 20 745616 1 84015496 97 tuple
 3 102 0 366480 0 84381976 98 dict of module
 4 287 1 313448 0 84695424 98 dict of type
 5 2426 5 310528 0 85005952 98 types.codetype
 6 2364 5 283680 0 85289632 99 function
 7 287 1 256960 0 85546592 99 type
 8 169 0 192088 0 85738680 99 dict (no owner)
 9 123 0 142728 0 85881408 99 dict of class

可以从结果中看到,95%的进程内存,都被一个list占用。

还可以通过下面这种方式,查看这个占内存最大的list中的数据类型。

from guppy import hpy;hxx = hpy();byrcs = hxx.heap().byrcs; byrcs[0].byid

关于guppy的详细用法,可以看这里()。

以上这篇对python程序内存泄漏调试的记录就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。