欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pytorch + visdom 处理简单分类问题的示例

程序员文章站 2023-11-26 16:10:04
环境 系统 : win 10 显卡:gtx965m cpu :i7-6700hq python 3.61 pytorch 0.3 包引用 im...

环境

系统 : win 10
显卡:gtx965m
cpu :i7-6700hq
python 3.61
pytorch 0.3

包引用

import torch
from torch.autograd import variable
import torch.nn.functional as f
import numpy as np
import visdom
import time
from torch import nn,optim

数据准备

use_gpu = true
ones = np.ones((500,2))
x1 = torch.normal(6*torch.from_numpy(ones),2)
y1 = torch.zeros(500) 
x2 = torch.normal(6*torch.from_numpy(ones*[-1,1]),2)
y2 = y1 +1
x3 = torch.normal(-6*torch.from_numpy(ones),2)
y3 = y1 +2
x4 = torch.normal(6*torch.from_numpy(ones*[1,-1]),2)
y4 = y1 +3 

x = torch.cat((x1, x2, x3 ,x4), 0).float()
y = torch.cat((y1, y2, y3, y4), ).long()  

可视化如下看一下:

pytorch + visdom 处理简单分类问题的示例

visdom可视化准备

先建立需要观察的windows

viz = visdom.visdom()
colors = np.random.randint(0,255,(4,3)) #颜色随机
#线图用来观察loss 和 accuracy
line = viz.line(x=np.arange(1,10,1), y=np.arange(1,10,1))
#散点图用来观察分类变化
scatter = viz.scatter(
  x=x,
  y=y+1, 
  opts=dict(
    markercolor = colors,
    marksize = 5,
    legend=["0","1","2","3"]),)
#text 窗口用来显示loss 、accuracy 、时间
text = viz.text("for test")
#散点图做对比
viz.scatter(
  x=x,
  y=y+1, 
  opts=dict(
    markercolor = colors,
    marksize = 5,
    legend=["0","1","2","3"]
  ),
)

效果如下:

pytorch + visdom 处理简单分类问题的示例

逻辑回归处理

输入2,输出4

logstic = nn.sequential(
  nn.linear(2,4)
)

gpu还是cpu选择:

if use_gpu:
  gpu_status = torch.cuda.is_available()
  if gpu_status:
    logstic = logstic.cuda()
    # net = net.cuda()
    print("###############使用gpu##############")
  else : print("###############使用cpu##############")
else:
  gpu_status = false
  print("###############使用cpu##############")

优化器和loss函数:

loss_f = nn.crossentropyloss()
optimizer_l = optim.sgd(logstic.parameters(), lr=0.001)

训练2000次:

start_time = time.time()
time_point, loss_point, accuracy_point = [], [], []
for t in range(2000):
  if gpu_status:
    train_x = variable(x).cuda()
    train_y = variable(y).cuda()
  else:
    train_x = variable(x)
    train_y = variable(y)
  # out = net(train_x)
  out_l = logstic(train_x)
  loss = loss_f(out_l,train_y)
  optimizer_l.zero_grad()
  loss.backward()
  optimizer_l.step()

训练过成观察及可视化:

if t % 10 == 0:
  prediction = torch.max(f.softmax(out_l, 1), 1)[1]
  pred_y = prediction.data
  accuracy = sum(pred_y ==train_y.data)/float(2000.0)
  loss_point.append(loss.data[0])
  accuracy_point.append(accuracy)
  time_point.append(time.time()-start_time)
  print("[{}/{}] | accuracy : {:.3f} | loss : {:.3f} | time : {:.2f} ".format(t + 1, 2000, accuracy, loss.data[0],
                                  time.time() - start_time))
  viz.line(x=np.column_stack((np.array(time_point),np.array(time_point))),
       y=np.column_stack((np.array(loss_point),np.array(accuracy_point))),
       win=line,
       opts=dict(legend=["loss", "accuracy"]))
   #这里的数据如果用gpu跑会出错,要把数据换成cpu的数据 .cpu()即可
  viz.scatter(x=train_x.cpu().data, y=pred_y.cpu()+1, win=scatter,name="add",
        opts=dict(markercolor=colors,legend=["0", "1", "2", "3"]))
  viz.text("<h3 align='center' style='color:blue'>accuracy : {}</h3><br><h3 align='center' style='color:pink'>"
       "loss : {:.4f}</h3><br><h3 align ='center' style='color:green'>time : {:.1f}</h3>"
       .format(accuracy,loss.data[0],time.time()-start_time),win =text)

我们先用cpu运行一次,结果如下:

pytorch + visdom 处理简单分类问题的示例

然后用gpu运行一下,结果如下:

pytorch + visdom 处理简单分类问题的示例

发现cpu的速度比gpu快很多,但是我听说机器学习应该是gpu更快啊,百度了一下,知乎上的答案是:

pytorch + visdom 处理简单分类问题的示例

我的理解就是gpu在处理图片识别大量矩阵运算等方面运算能力远高于cpu,在处理一些输入和输出都很少的,还是cpu更具优势。

添加神经层:

net = nn.sequential(
  nn.linear(2, 10),
  nn.relu(),  #激活函数
  nn.linear(10, 4)
)

添加一层10单元神经层,看看效果是否会有所提升:

使用cpu:

pytorch + visdom 处理简单分类问题的示例 

使用gpu:

pytorch + visdom 处理简单分类问题的示例

比较观察,似乎并没有什么区别,看来处理简单分类问题(输入,输出少)的问题,神经层和gpu不会对机器学习加持。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。