欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

使用PyTorch实现MNIST手写体识别代码

程序员文章站 2023-11-25 13:51:46
实验环境 win10 + anaconda + jupyter notebook pytorch1.1.0 python3.7 gpu环境(可选) mnist数据集介绍...

实验环境

win10 + anaconda + jupyter notebook

pytorch1.1.0

python3.7

gpu环境(可选)

mnist数据集介绍

mnist 包括6万张28x28的训练样本,1万张测试样本,可以说是cv里的“hello word”。本文使用的cnn网络将mnist数据的识别率提高到了99%。下面我们就开始进行实战。

导入包

import torch
import torch.nn as nn
import torch.nn.functional as f
import torch.optim as optim
from torchvision import datasets, transforms
torch.__version__

定义超参数

batch_size=512
epochs=20 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

数据集

我们直接使用pytorch中自带的dataset,并使用dataloader对训练数据和测试数据分别进行读取。如果下载过数据集这里download可选择false

train_loader = torch.utils.data.dataloader(
    datasets.mnist('data', train=true, download=true, 
            transform=transforms.compose([
              transforms.totensor(),
              transforms.normalize((0.1307,), (0.3081,))
            ])),
    batch_size=batch_size, shuffle=true)

test_loader = torch.utils.data.dataloader(
    datasets.mnist('data', train=false, transform=transforms.compose([
              transforms.totensor(),
              transforms.normalize((0.1307,), (0.3081,))
            ])),
    batch_size=batch_size, shuffle=true)

定义网络

该网络包括两个卷积层和两个线性层,最后输出10个维度,即代表0-9十个数字。

class convnet(nn.module):
  def __init__(self):
    super().__init__()
    self.conv1=nn.conv2d(1,10,5) # input:(1,28,28) output:(10,24,24) 
    self.conv2=nn.conv2d(10,20,3) # input:(10,12,12) output:(20,10,10)
    self.fc1 = nn.linear(20*10*10,500)
    self.fc2 = nn.linear(500,10)
  def forward(self,x):
    in_size = x.size(0)
    out = self.conv1(x)
    out = f.relu(out)
    out = f.max_pool2d(out, 2, 2) 
    out = self.conv2(out)
    out = f.relu(out)
    out = out.view(in_size,-1)
    out = self.fc1(out)
    out = f.relu(out)
    out = self.fc2(out)
    out = f.log_softmax(out,dim=1)
    return out

实例化网络

model = convnet().to(device) # 将网络移动到gpu上
optimizer = optim.adam(model.parameters()) # 使用adam优化器

定义训练函数

def train(model, device, train_loader, optimizer, epoch):
  model.train()
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = f.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if(batch_idx+1)%30 == 0: 
      print('train epoch: {} [{}/{} ({:.0f}%)]\tloss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.item()))

定义测试函数

def test(model, device, test_loader):
  model.eval()
  test_loss = 0
  correct = 0
  with torch.no_grad():
    for data, target in test_loader:
      data, target = data.to(device), target.to(device)
      output = model(data)
      test_loss += f.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加
      pred = output.max(1, keepdim=true)[1] # 找到概率最大的下标
      correct += pred.eq(target.view_as(pred)).sum().item()

  test_loss /= len(test_loader.dataset)
  print('\ntest set: average loss: {:.4f}, accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))

开始训练

for epoch in range(1, epochs + 1):
  train(model, device, train_loader, optimizer, epoch)
  test(model, device, test_loader)

实验结果

train epoch: 1 [14848/60000 (25%)]	loss: 0.375058
train epoch: 1 [30208/60000 (50%)]	loss: 0.255248
train epoch: 1 [45568/60000 (75%)]	loss: 0.128060

test set: average loss: 0.0992, accuracy: 9690/10000 (97%)

train epoch: 2 [14848/60000 (25%)]	loss: 0.093066
train epoch: 2 [30208/60000 (50%)]	loss: 0.087888
train epoch: 2 [45568/60000 (75%)]	loss: 0.068078

test set: average loss: 0.0599, accuracy: 9816/10000 (98%)

train epoch: 3 [14848/60000 (25%)]	loss: 0.043926
train epoch: 3 [30208/60000 (50%)]	loss: 0.037321
train epoch: 3 [45568/60000 (75%)]	loss: 0.068404

test set: average loss: 0.0416, accuracy: 9859/10000 (99%)

train epoch: 4 [14848/60000 (25%)]	loss: 0.031654
train epoch: 4 [30208/60000 (50%)]	loss: 0.041341
train epoch: 4 [45568/60000 (75%)]	loss: 0.036493

test set: average loss: 0.0361, accuracy: 9873/10000 (99%)

train epoch: 5 [14848/60000 (25%)]	loss: 0.027688
train epoch: 5 [30208/60000 (50%)]	loss: 0.019488
train epoch: 5 [45568/60000 (75%)]	loss: 0.018023

test set: average loss: 0.0344, accuracy: 9875/10000 (99%)

train epoch: 6 [14848/60000 (25%)]	loss: 0.024212
train epoch: 6 [30208/60000 (50%)]	loss: 0.018689
train epoch: 6 [45568/60000 (75%)]	loss: 0.040412

test set: average loss: 0.0350, accuracy: 9879/10000 (99%)

train epoch: 7 [14848/60000 (25%)]	loss: 0.030426
train epoch: 7 [30208/60000 (50%)]	loss: 0.026939
train epoch: 7 [45568/60000 (75%)]	loss: 0.010722

test set: average loss: 0.0287, accuracy: 9892/10000 (99%)

train epoch: 8 [14848/60000 (25%)]	loss: 0.021109
train epoch: 8 [30208/60000 (50%)]	loss: 0.034845
train epoch: 8 [45568/60000 (75%)]	loss: 0.011223

test set: average loss: 0.0299, accuracy: 9904/10000 (99%)

train epoch: 9 [14848/60000 (25%)]	loss: 0.011391
train epoch: 9 [30208/60000 (50%)]	loss: 0.008091
train epoch: 9 [45568/60000 (75%)]	loss: 0.039870

test set: average loss: 0.0341, accuracy: 9890/10000 (99%)

train epoch: 10 [14848/60000 (25%)]	loss: 0.026813
train epoch: 10 [30208/60000 (50%)]	loss: 0.011159
train epoch: 10 [45568/60000 (75%)]	loss: 0.024884

test set: average loss: 0.0286, accuracy: 9901/10000 (99%)

train epoch: 11 [14848/60000 (25%)]	loss: 0.006420
train epoch: 11 [30208/60000 (50%)]	loss: 0.003641
train epoch: 11 [45568/60000 (75%)]	loss: 0.003402

test set: average loss: 0.0377, accuracy: 9894/10000 (99%)

train epoch: 12 [14848/60000 (25%)]	loss: 0.006866
train epoch: 12 [30208/60000 (50%)]	loss: 0.012617
train epoch: 12 [45568/60000 (75%)]	loss: 0.008548

test set: average loss: 0.0311, accuracy: 9908/10000 (99%)

train epoch: 13 [14848/60000 (25%)]	loss: 0.010539
train epoch: 13 [30208/60000 (50%)]	loss: 0.002952
train epoch: 13 [45568/60000 (75%)]	loss: 0.002313

test set: average loss: 0.0293, accuracy: 9905/10000 (99%)

train epoch: 14 [14848/60000 (25%)]	loss: 0.002100
train epoch: 14 [30208/60000 (50%)]	loss: 0.000779
train epoch: 14 [45568/60000 (75%)]	loss: 0.005952

test set: average loss: 0.0335, accuracy: 9897/10000 (99%)

train epoch: 15 [14848/60000 (25%)]	loss: 0.006053
train epoch: 15 [30208/60000 (50%)]	loss: 0.002559
train epoch: 15 [45568/60000 (75%)]	loss: 0.002555

test set: average loss: 0.0357, accuracy: 9894/10000 (99%)

train epoch: 16 [14848/60000 (25%)]	loss: 0.000895
train epoch: 16 [30208/60000 (50%)]	loss: 0.004923
train epoch: 16 [45568/60000 (75%)]	loss: 0.002339

test set: average loss: 0.0400, accuracy: 9893/10000 (99%)

train epoch: 17 [14848/60000 (25%)]	loss: 0.004136
train epoch: 17 [30208/60000 (50%)]	loss: 0.000927
train epoch: 17 [45568/60000 (75%)]	loss: 0.002084

test set: average loss: 0.0353, accuracy: 9895/10000 (99%)

train epoch: 18 [14848/60000 (25%)]	loss: 0.004508
train epoch: 18 [30208/60000 (50%)]	loss: 0.001272
train epoch: 18 [45568/60000 (75%)]	loss: 0.000543

test set: average loss: 0.0380, accuracy: 9894/10000 (99%)

train epoch: 19 [14848/60000 (25%)]	loss: 0.001699
train epoch: 19 [30208/60000 (50%)]	loss: 0.000661
train epoch: 19 [45568/60000 (75%)]	loss: 0.000275

test set: average loss: 0.0339, accuracy: 9905/10000 (99%)

train epoch: 20 [14848/60000 (25%)]	loss: 0.000441
train epoch: 20 [30208/60000 (50%)]	loss: 0.000695
train epoch: 20 [45568/60000 (75%)]	loss: 0.000467

test set: average loss: 0.0396, accuracy: 9894/10000 (99%)

总结

一个实际项目的工作流程:找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。

以上这篇使用pytorch实现mnist手写体识别代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。