欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch 实现计算分类器准确率(总分类及子分类)

程序员文章站 2023-11-25 13:04:46
分类器平均准确率计算: correct = torch.zeros(1).squeeze().cuda() total = torch.zeros(1).squeeze()...

分类器平均准确率计算:

correct = torch.zeros(1).squeeze().cuda()
total = torch.zeros(1).squeeze().cuda()
for i, (images, labels) in enumerate(train_loader):
      images = variable(images.cuda())
      labels = variable(labels.cuda())

      output = model(images)

      prediction = torch.argmax(output, 1)
      correct += (prediction == labels).sum().float()
      total += len(labels)
acc_str = 'accuracy: %f'%((correct/total).cpu().detach().data.numpy())

分类器各个子类准确率计算:

correct = list(0. for i in range(args.class_num))
total = list(0. for i in range(args.class_num))
for i, (images, labels) in enumerate(train_loader):
      images = variable(images.cuda())
      labels = variable(labels.cuda())

      output = model(images)

      prediction = torch.argmax(output, 1)
      res = prediction == labels
      for label_idx in range(len(labels)):
        label_single = label[label_idx]
        correct[label_single] += res[label_idx].item()
        total[label_single] += 1
 acc_str = 'accuracy: %f'%(sum(correct)/sum(total))
 for acc_idx in range(len(train_class_correct)):
      try:
        acc = correct[acc_idx]/total[acc_idx]
      except:
        acc = 0
      finally:
        acc_str += '\tclassid:%d\tacc:%f\t'%(acc_idx+1, acc)

以上这篇pytorch 实现计算分类器准确率(总分类及子分类)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。