欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

pandas DataFrame索引行列的实现

程序员文章站 2023-11-24 13:43:22
python版本: 3.6 pandas版本: 0.23.4 行索引 索引行有三种方法,分别是 loc iloc ix import p...
  • python版本: 3.6
  • pandas版本: 0.23.4

行索引

索引行有三种方法,分别是 loc iloc ix

import pandas as pd
import numpy as np

index = ["a", "b", "c", "d"]
data = np.random.randint(10, size=(4, 3))
df = pd.dataframe(data, index=index)

"""
  0 1 2
a 9 7 1
b 0 0 7
c 2 6 5
d 8 2 5
"""

loc

loc通过行索引名字来确定行的

单行索引, 返回series对象

df.loc["a"]
"""
0  9
1  7
2  1
name: a, dtype: int64
"""

df.loc["b"]
"""
0  0
1  0
2  7
name: b, dtype: int64
"""

多行索引, 返回dataframe对象

df.loc[["a", "c"]]
"""
  0 1 2
a 9 7 1
c 2 6 5
"""

iloc

通过行索引序号来确定行的

单行索引, 返回series对象

df.iloc[0]
"""
0  9
1  7
2  1
name: a, dtype: int64
"""

df.iloc[1]
"""
0  0
1  0
2  7
name: b, dtype: int64
"""

多行索引, 返回dataframe对象

df.iloc[[0, 2]]
"""
  0 1 2
a 9 7 1
c 2 6 5
"""

ix(不建议使用)

通过行索引名字或序号来确定行的, 如果行索引 index 的类型为整型时, 使用 ix 方法索引时为按行索引名字进行索引, 如行索引名不存在则会报错

index = [2, 3, 4, 5]
df = pd.dataframe(data, index=index)

"""
  0 1 2
2 9 7 1
3 0 0 7
4 2 6 5
5 8 2 5
"""

df.ix[2]
"""
0  9
1  7
2  1
name: 2, dtype: int64
"""
# 提示信息
"""
.ix is deprecated. please use
.loc for label based indexing or
.iloc for positional indexing
"""

# 如果 index 为整数, 则不能按行索引号进行索引
df.ix[0]
"""
...
keyerror: 0
"""

列索引

索引行有两种方法,分别是 . []

import pandas as pd
import numpy as np

columns = ["i", "ii", "iii"]
data = np.random.randint(10, size=(4, 3))
df = pd.dataframe(data, columns=columns)

"""
  i ii iii 
0 4  5  9 
1 0  3  4 
2 7  9  1 
3 8  2  3 
"""

通过 . 属性直接获取指定行, 返回series对象

df.i
"""
0  4
1  0
2  7
3  8
name: i, dtype: int64
"""

 []

单列索引, 返回dataframe对象

df[["i"]]
"""
  i
0 4
1 0
2 7
3 8
"""

多列索引, 返回dataframe对象

df[["i", "ii"]]
"""
  i ii
0 4  5
1 0  3
2 7  9
3 8  2
"""

同时索引行及列

通过指定索引名或切片方式进行索引

index = ["a", "f", "c", "h"]
columns = ["i", "ii", "iii"]

df = pd.dataframe(data, index=index, columns=columns)
"""
  i ii iii
a 4  5  9
f 0  3  4
c 7  9  1
h 8  2  3
"""

loc

通过指定行及列索引名进行索引, 返回dataframe对象

df.loc[["a", "f"], ["ii", "iii"]]
"""
  ii iii
a  5  9
f  3  4
"""

通过指定行及列索引名范围进行索引(包含边值), 返回dataframe对象

df.loc["a":"c", "ii":"iii"]
"""
  ii iii
a  5  9
f  3  4
c  9  1
"""

iloc

通过指定行及列索引号进行索引, 返回dataframe对象

df.iloc[[0, 1], [1, 2]]
"""
  ii iii
a  5  9
f  3  4
"""

通过指定行及列索引号范围进行切片索引(左闭右开), 返回dataframe对象

df.iloc[:3, 1:3]
"""
  ii iii
a  5  9
f  3  4
c  9  1
"""

ix(不建议使用)

通过指定行及列索引号范围或名字范围进行切片, 返回dataframe对象

df.ix["a":"c", "i":"iii"]
df.ix["a":"c", 1:3]
df.ix[:3, 1:3]

tips: 只有使用 iloc 或 ix 按索引号进行切片索引时才为左闭右开, 其余全闭

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。