欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TensorFlow绘制loss/accuracy曲线的实例

程序员文章站 2023-11-21 17:13:46
1. 多曲线 1.1 使用pyplot方式 import numpy as np import matplotlib.pyplot as plt x = np.a...

1. 多曲线

1.1 使用pyplot方式

import numpy as np
import matplotlib.pyplot as plt
 
x = np.arange(1, 11, 1)
 
plt.plot(x, x * 2, label="first")
plt.plot(x, x * 3, label="second")
plt.plot(x, x * 4, label="third")
 
plt.legend(loc=0, ncol=1)  # 参数:loc设置显示的位置,0是自适应;ncol设置显示的列数
 
plt.show()

1.2 使用面向对象方式

import numpy as np
import matplotlib.pyplot as plt
 
x = np.arange(1, 11, 1)
 
fig = plt.figure()
ax = fig.add_subplot(111)
 
 
ax.plot(x, x * 2, label="first")
ax.plot(x, x * 3, label="second")
 
ax.legend(loc=0)
# ax.plot(x, x * 2)
# ax.legend([”demo“], loc=0)
 
plt.show()

TensorFlow绘制loss/accuracy曲线的实例

2. 双y轴曲线

双y轴曲线图例合并是一个棘手的操作,现以mnist案例中loss/accuracy绘制曲线。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
import matplotlib.pyplot as plt
import numpy as np
 
x_data = tf.placeholder(tf.float32, [none, 784])
y_data = tf.placeholder(tf.float32, [none, 10])
x_image = tf.reshape(x_data, [-1, 28, 28, 1])
 
# convolve layer 1
filter1 = tf.variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='same')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
maxpool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='same')
 
# convolve layer 2
filter2 = tf.variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxpool2, filter2, strides=[1, 1, 1, 1], padding='same')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
maxpool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='same')
 
# convolve layer 3
filter3 = tf.variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxpool3, filter3, strides=[1, 1, 1, 1], padding='same')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)
 
# full connection layer 1
w_fc1 = tf.variable(tf.truncated_normal([7 * 7 * 120, 80]))
b_fc1 = tf.variable(tf.truncated_normal([80]))
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
 
# full connection layer 2
w_fc2 = tf.variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.variable(tf.truncated_normal([10]))
y_model = tf.nn.softmax(tf.matmul(h_fc1, w_fc2) + b_fc2)
 
cross_entropy = - tf.reduce_sum(y_data * tf.log(y_model))
 
train_step = tf.train.gradientdescentoptimizer(1e-3).minimize(cross_entropy)
 
sess = tf.interactivesession()
correct_prediction = tf.equal(tf.argmax(y_data, 1), tf.argmax(y_model, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
 
mnist = input_data.read_data_sets("mnist_data/", one_hot=true)
 
fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])
 
start_time = time.time()
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(200)
  if i % 100 == 0:
    train_accuracy = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
    print("step %d, train accuracy %g" % (i, train_accuracy))
    end_time = time.time()
    print("time:", (end_time - start_time))
    start_time = end_time
    print("********************************")
  train_step.run(feed_dict={x_data: batch_xs, y_data: batch_ys})
  fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
  fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
print("test accuracy %g" % sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))
 
 
# 绘制曲线
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["loss", "accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)
plt.show()

注:数据集保存在mnist_data文件夹下

其实就是三步:

1)分别定义loss/accuracy一维数组

fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])
# 按间隔定义方式:fig_accuracy = np.zeros(int(np.ceil(iteration / interval)))

2)填充真实数据

 fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
 fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})

3)绘制曲线

fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["loss", "accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)

TensorFlow绘制loss/accuracy曲线的实例

以上这篇tensorflow绘制loss/accuracy曲线的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。