欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pandas中NaN缺失值处理

程序员文章站 2023-11-21 16:24:28
2.1 判断缺失值是否存在2.2 存在缺失值nan,并且是np.nan2.3 不是缺失值nan,有默认标记的...


Pandas中NaN缺失值处理

一、如何处理nan

Pandas中NaN缺失值处理

二、电影数据的缺失值处理

  • 电影数据的缺失值处理
# 读取电影数据
movie = pd.read_csv("./data/IMDB-Movie-Data.csv")

Pandas中NaN缺失值处理

2.1 判断缺失值是否存在

  • pd.notnull()
pd.notnull(movie)
Rank    Title    Genre    Description    Director    Actors    Year    Runtime (Minutes)    Rating    Votes    Revenue (Millions)    Metascore
0    True    True    True    True    True    True    True    True    True    True    True    True
1    True    True    True    True    True    True    True    True    True    True    True    True
2    True    True    True    True    True    True    True    True    True    True    True    True
3    True    True    True    True    True    True    True    True    True    True    True    True
4    True    True    True    True    True    True    True    True    True    True    True    True
5    True    True    True    True    True    True    True    True    True    True    True    True
6    True    True    True    True    True    True    True    True    True    True    True    True
7    True    True    True    True    True    True    True    True    True    True    False    True
np.all(pd.notnull(movie))

2.2 存在缺失值nan,并且是np.nan

  • 1、删除

pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan

# 不修改原数据
movie.dropna()

# 可以定义新的变量接受或者用原来的变量名
data = movie.dropna()
  • 2、均值替换缺失值
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)
  • 3、指定值替换
fill_dict={
    'Revenue (Millions)':-100,#Revenue (Millions)列用-100填充
    'Metascore':-10#Metascore列用-10填充
}
movie=movie.fillna(fill_dict)

2.3 不是缺失值nan,有默认标记的

数据是这样的:
Pandas中NaN缺失值处理
处理思路分析:

  • 1、先替换‘?’为np.nan
    • df.replace(to_replace=, value=)
      • to_replace:替换前的值
      • value:替换后的值
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)
  • 2、在进行缺失值的处理
# 删除
wis = wis.dropna()

三、小结

  • isnull、notnull判断是否存在缺失值【知道】
    • np.any(pd.isnull(movie)) # 里面如果有一个缺失值,就返回True
    • np.all(pd.notnull(movie)) # 里面如果有一个缺失值,就返回False
  • dropna删除np.nan标记的缺失值【知道】
    • movie.dropna()
  • fillna填充缺失值【知道】
    • movie[i].fillna(value=movie[i].mean(), inplace=True)
  • replace替换具体某些值【知道】
    • wis.replace(to_replace="?", value=np.NaN)

本文地址:https://blog.csdn.net/geek64581/article/details/107055339