C#验证码识别类完整实例
程序员文章站
2023-11-20 22:07:22
本文实例讲述了c#验证码识别类。分享给大家供大家参考。具体实现方法如下:
using system;
using system.collections.gene...
本文实例讲述了c#验证码识别类。分享给大家供大家参考。具体实现方法如下:
using system; using system.collections.generic; using system.linq; using system.text; using system.drawing; using system.drawing.imaging; using system.runtime.interopservices; namespace 验证码处理 { class verifycode { public bitmap bmpobj; public verifycode(bitmap pic) { bmpobj = new bitmap(pic); //转换为format32bpprgb } /// <summary> /// 根据rgb,计算灰度值 /// </summary> /// <param name="posclr">color值</param> /// <returns>灰度值,整型</returns> private int getgraynumcolor(system.drawing.color posclr) { return (posclr.r * 19595 + posclr.g * 38469 + posclr.b * 7472) >> 16; } /// <summary> /// 灰度转换,逐点方式 /// </summary> public void graybypixels() { for (int i = 0; i < bmpobj.height; i++) { for (int j = 0; j < bmpobj.width; j++) { int tmpvalue = getgraynumcolor(bmpobj.getpixel(j, i)); bmpobj.setpixel(j, i, color.fromargb(tmpvalue, tmpvalue, tmpvalue)); } } } /// <summary> /// 去图形边框 /// </summary> /// <param name="borderwidth"></param> public void clearpicborder(int borderwidth) { for (int i = 0; i < bmpobj.height; i++) { for (int j = 0; j < bmpobj.width; j++) { if (i < borderwidth || j < borderwidth || j > bmpobj.width - 1 - borderwidth || i > bmpobj.height - 1 - borderwidth) bmpobj.setpixel(j, i, color.fromargb(255, 255, 255)); } } } /// <summary> /// 灰度转换,逐行方式 /// </summary> public void graybyline() { rectangle rec = new rectangle(0, 0, bmpobj.width, bmpobj.height); bitmapdata bmpdata = bmpobj.lockbits(rec, imagelockmode.readwrite, bmpobj.pixelformat);// pixelformat.format32bpppargb); // bmpdata.pixelformat = pixelformat.format24bpprgb; intptr scan0 = bmpdata.scan0; int len = bmpobj.width * bmpobj.height; int[] pixels = new int[len]; marshal.copy(scan0, pixels, 0, len); //对图片进行处理 int grayvalue = 0; for (int i = 0; i < len; i++) { grayvalue = getgraynumcolor(color.fromargb(pixels[i])); pixels[i] = (byte)(color.fromargb(grayvalue, grayvalue, grayvalue)).toargb(); //color转byte } bmpobj.unlockbits(bmpdata); ////输出 //gchandle gch = gchandle.alloc(pixels, gchandletype.pinned); //bmpoutput = new bitmap(bmpobj.width, bmpobj.height, bmpdata.stride, bmpdata.pixelformat, gch.addrofpinnedobject()); //gch.free(); } /// <summary> /// 得到有效图形并调整为可平均分割的大小 /// </summary> /// <param name="dggrayvalue">灰度背景分界值</param> /// <param name="charscount">有效字符数</param> /// <returns></returns> public void getpicvalidbyvalue(int dggrayvalue, int charscount) { int posx1 = bmpobj.width; int posy1 = bmpobj.height; int posx2 = 0; int posy2 = 0; for (int i = 0; i < bmpobj.height; i++) //找有效区 { for (int j = 0; j < bmpobj.width; j++) { int pixelvalue = bmpobj.getpixel(j, i).r; if (pixelvalue < dggrayvalue) //根据灰度值 { if (posx1 > j) posx1 = j; if (posy1 > i) posy1 = i; if (posx2 < j) posx2 = j; if (posy2 < i) posy2 = i; }; }; }; // 确保能整除 int span = charscount - (posx2 - posx1 + 1) % charscount; //可整除的差额数 if (span < charscount) { int leftspan = span / 2; //分配到左边的空列 ,如span为单数,则右边比左边大1 if (posx1 > leftspan) posx1 = posx1 - leftspan; if (posx2 + span - leftspan < bmpobj.width) posx2 = posx2 + span - leftspan; } //复制新图 rectangle clonerect = new rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1); bmpobj = bmpobj.clone(clonerect, bmpobj.pixelformat); } /// <summary> /// 得到有效图形,图形为类变量 /// </summary> /// <param name="dggrayvalue">灰度背景分界值</param> /// <param name="charscount">有效字符数</param> /// <returns></returns> public void getpicvalidbyvalue(int dggrayvalue) { int posx1 = bmpobj.width; int posy1 = bmpobj.height; int posx2 = 0; int posy2 = 0; for (int i = 0; i < bmpobj.height; i++) //找有效区 { for (int j = 0; j < bmpobj.width; j++) { int pixelvalue = bmpobj.getpixel(j, i).r; if (pixelvalue < dggrayvalue) //根据灰度值 { if (posx1 > j) posx1 = j; if (posy1 > i) posy1 = i; if (posx2 < j) posx2 = j; if (posy2 < i) posy2 = i; }; }; }; //复制新图 rectangle clonerect = new rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1); bmpobj = bmpobj.clone(clonerect, bmpobj.pixelformat); } /// <summary> /// 得到有效图形,图形由外面传入 /// </summary> /// <param name="dggrayvalue">灰度背景分界值</param> /// <param name="charscount">有效字符数</param> /// <returns></returns> public bitmap getpicvalidbyvalue(bitmap singlepic, int dggrayvalue) { int posx1 = singlepic.width; int posy1 = singlepic.height; int posx2 = 0; int posy2 = 0; for (int i = 0; i < singlepic.height; i++) //找有效区 { for (int j = 0; j < singlepic.width; j++) { int pixelvalue = singlepic.getpixel(j, i).r; if (pixelvalue < dggrayvalue) //根据灰度值 { if (posx1 > j) posx1 = j; if (posy1 > i) posy1 = i; if (posx2 < j) posx2 = j; if (posy2 < i) posy2 = i; }; }; }; //复制新图 rectangle clonerect = new rectangle(posx1, posy1, posx2 - posx1 + 1, posy2 - posy1 + 1); return singlepic.clone(clonerect, singlepic.pixelformat); } /// <summary> /// 平均分割图片 /// </summary> /// <param name="rownum">水平上分割数</param> /// <param name="colnum">垂直上分割数</param> /// <returns>分割好的图片数组</returns> public bitmap [] getsplitpics(int rownum,int colnum) { if (rownum == 0 || colnum == 0) return null; int singw = bmpobj.width / rownum; int singh = bmpobj.height / colnum; bitmap [] picarray=new bitmap[rownum*colnum]; rectangle clonerect; for (int i = 0; i < colnum; i++) //找有效区 { for (int j = 0; j < rownum; j++) { clonerect = new rectangle(j*singw, i*singh, singw , singh); picarray[i*rownum+j]=bmpobj.clone(clonerect, bmpobj.pixelformat);//复制小块图 } } return picarray; } /// <summary> /// 返回灰度图片的点阵描述字串,1表示灰点,0表示背景 /// </summary> /// <param name="singlepic">灰度图</param> /// <param name="dggrayvalue">背前景灰色界限</param> /// <returns></returns> public string getsinglebmpcode(bitmap singlepic, int dggrayvalue) { color piexl; string code = ""; for (int posy = 0; posy < singlepic.height; posy++) for (int posx = 0; posx < singlepic.width; posx++) { piexl = singlepic.getpixel(posx, posy); if (piexl.r < dggrayvalue) // color.black ) code = code + "1"; else code = code + "0"; } return code; } /// <summary> /// 得到灰度图像前景背景的临界值 最大类间方差法 /// </summary> /// <returns>前景背景的临界值</returns> public int getdggrayvalue() { int[] pixelnum = new int[256]; //图象直方图,共256个点 int n, n1, n2; int total; //total为总和,累计值 double m1, m2, sum, csum, fmax, sb; //sb为类间方差,fmax存储最大方差值 int k, t, q; int threshvalue = 1; // 阈值 //生成直方图 for (int i = 0; i < bmpobj.width; i++) { for (int j = 0; j < bmpobj.height; j++) { //返回各个点的颜色,以rgb表示 pixelnum[bmpobj.getpixel(i, j).r]++; //相应的直方图加1 } } //直方图平滑化 for (k = 0; k <= 255; k++) { total = 0; for (t = -2; t <= 2; t++) //与附近2个灰度做平滑化,t值应取较小的值 { q = k + t; if (q < 0) //越界处理 q = 0; if (q > 255) q = 255; total = total + pixelnum[q]; //total为总和,累计值 } pixelnum[k] = (int)((float)total / 5.0 + 0.5); //平滑化,左边2个+中间1个+右边2个灰度,共5个,所以总和除以5,后面加0.5是用修正值 } //求阈值 sum = csum = 0.0; n = 0; //计算总的图象的点数和质量矩,为后面的计算做准备 for (k = 0; k <= 255; k++) { sum += (double)k * (double)pixelnum[k]; //x*f(x)质量矩,也就是每个灰度的值乘以其点数(归一化后为概率),sum为其总和 n += pixelnum[k]; //n为图象总的点数,归一化后就是累积概率 } fmax = -1.0; //类间方差sb不可能为负,所以fmax初始值为-1不影响计算的进行 n1 = 0; for (k = 0; k < 256; k++) //对每个灰度(从0到255)计算一次分割后的类间方差sb { n1 += pixelnum[k]; //n1为在当前阈值遍前景图象的点数 if (n1 == 0) { continue; } //没有分出前景后景 n2 = n - n1; //n2为背景图象的点数 if (n2 == 0) { break; } //n2为0表示全部都是后景图象,与n1=0情况类似,之后的遍历不可能使前景点数增加,所以此时可以退出循环 csum += (double)k * pixelnum[k]; //前景的“灰度的值*其点数”的总和 m1 = csum / n1; //m1为前景的平均灰度 m2 = (sum - csum) / n2; //m2为背景的平均灰度 sb = (double)n1 * (double)n2 * (m1 - m2) * (m1 - m2); //sb为类间方差 if (sb > fmax) //如果算出的类间方差大于前一次算出的类间方差 { fmax = sb; //fmax始终为最大类间方差(otsu) threshvalue = k; //取最大类间方差时对应的灰度的k就是最佳阈值 } } return threshvalue; } /// <summary> /// 去掉杂点(适合杂点/杂线粗为1) /// </summary> /// <param name="dggrayvalue">背前景灰色界限</param> /// <returns></returns> public void clearnoise(int dggrayvalue, int maxnearpoints) { color piexl; int neardots = 0; //逐点判断 for (int i = 0; i < bmpobj.width; i++) for (int j = 0; j < bmpobj.height; j++) { piexl = bmpobj.getpixel(i, j); if (piexl.r < dggrayvalue) { neardots = 0; //判断周围8个点是否全为空 if (i == 0 || i == bmpobj.width - 1 || j == 0 || j == bmpobj.height - 1) //边框全去掉 { bmpobj.setpixel(i, j, color.fromargb(255, 255, 255)); } else { if (bmpobj.getpixel(i - 1, j - 1).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i, j - 1).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i + 1, j - 1).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i - 1, j).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i + 1, j).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i - 1, j + 1).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i, j + 1).r < dggrayvalue) neardots++; if (bmpobj.getpixel(i + 1, j + 1).r < dggrayvalue) neardots++; } if (neardots < maxnearpoints) bmpobj.setpixel(i, j, color.fromargb(255, 255, 255)); //去掉单点 && 粗细小3邻边点 } else //背景 bmpobj.setpixel(i, j, color.fromargb(255, 255, 255)); } } /// <summary> /// 3×3中值滤波除杂 /// </summary> /// <param name="dggrayvalue"></param> public void clearnoise(int dggrayvalue) { int x, y; byte[] p = new byte[9]; //最小处理窗口3*3 byte s; //byte[] lptemp=new byte[nbytewidth*nheight]; int i, j; //--!!!!!!!!!!!!!!下面开始窗口为3×3中值滤波!!!!!!!!!!!!!!!! for (y = 1; y < bmpobj.height - 1; y++) //--第一行和最后一行无法取窗口 { for (x = 1; x < bmpobj.width - 1; x++) { //取9个点的值 p[0] = bmpobj.getpixel(x - 1, y - 1).r; p[1] = bmpobj.getpixel(x, y - 1).r; p[2] = bmpobj.getpixel(x + 1, y - 1).r; p[3] = bmpobj.getpixel(x - 1, y).r; p[4] = bmpobj.getpixel(x, y).r; p[5] = bmpobj.getpixel(x + 1, y).r; p[6] = bmpobj.getpixel(x - 1, y + 1).r; p[7] = bmpobj.getpixel(x, y + 1).r; p[8] = bmpobj.getpixel(x + 1, y + 1).r; //计算中值 for (j = 0; j < 5; j++) { for (i = j + 1; i < 9; i++) { if (p[j] > p[i]) { s = p[j]; p[j] = p[i]; p[i] = s; } } } // if (bmpobj.getpixel(x, y).r < dggrayvalue) bmpobj.setpixel(x, y, color.fromargb(p[4], p[4], p[4])); //给有效值付中值 } } } /// <summary> /// 该函数用于对图像进行腐蚀运算。结构元素为水平方向或垂直方向的三个点, /// 中间点位于原点;或者由用户自己定义3×3的结构元素。 /// </summary> /// <param name="dggrayvalue">前后景临界值</param> /// <param name="nmode">腐蚀方式:0表示水平方向,1垂直方向,2自定义结构元素。</param> /// <param name="structure"> 自定义的3×3结构元素</param> public void erosionpic(int dggrayvalue, int nmode, bool[,] structure) { int lwidth = bmpobj.width; int lheight = bmpobj.height; bitmap newbmp = new bitmap(lwidth, lheight); int i, j, n, m; //循环变量 if (nmode == 0) { //使用水平方向的结构元素进行腐蚀 // 由于使用1×3的结构元素,为防止越界,所以不处理最左边和最右边 // 的两列像素 for (j = 0; j < lheight; j++) { for (i = 1; i < lwidth - 1; i++) { //目标图像中的当前点先赋成黑色 newbmp.setpixel(i, j, color.black); //如果源图像中当前点自身或者左右有一个点不是黑色, //则将目标图像中的当前点赋成白色 if (bmpobj.getpixel(i - 1, j).r > dggrayvalue || bmpobj.getpixel(i, j).r > dggrayvalue || bmpobj.getpixel(i + 1, j).r > dggrayvalue) newbmp.setpixel(i, j, color.white); } } } else if (nmode == 1) { //使用垂真方向的结构元素进行腐蚀 // 由于使用3×1的结构元素,为防止越界,所以不处理最上边和最下边 // 的两行像素 for (j = 1; j < lheight - 1; j++) { for (i = 0; i < lwidth; i++) { //目标图像中的当前点先赋成黑色 newbmp.setpixel(i, j, color.black); //如果源图像中当前点自身或者左右有一个点不是黑色, //则将目标图像中的当前点赋成白色 if (bmpobj.getpixel(i, j - 1).r > dggrayvalue || bmpobj.getpixel(i, j).r > dggrayvalue || bmpobj.getpixel(i, j + 1).r > dggrayvalue) newbmp.setpixel(i, j, color.white); } } } else { if (structure.length != 9) //检查自定义结构 return; //使用自定义的结构元素进行腐蚀 // 由于使用3×3的结构元素,为防止越界,所以不处理最左边和最右边 // 的两列像素和最上边和最下边的两列像素 for (j = 1; j < lheight - 1; j++) { for (i = 1; i < lwidth - 1; i++) { //目标图像中的当前点先赋成黑色 newbmp.setpixel(i, j, color.black); //如果原图像中对应结构元素中为黑色的那些点中有一个不是黑色, //则将目标图像中的当前点赋成白色 for (m = 0; m < 3; m++) { for (n = 0; n < 3; n++) { if (!structure[m, n]) continue; if (bmpobj.getpixel(i + m - 1, j + n - 1).r > dggrayvalue) { newbmp.setpixel(i, j, color.white); break; } } } } } } bmpobj = newbmp; } /// <summary> /// 该函数用于对图像进行细化运算。要求目标图像为灰度图像 /// </summary> /// <param name="dggrayvalue"></param> public void thiningpic(int dggrayvalue) { int lwidth = bmpobj.width; int lheight = bmpobj.height; // bitmap newbmp = new bitmap(lwidth, lheight); bool bmodified; //脏标记 int i, j, n, m; //循环变量 //四个条件 bool bcondition1; bool bcondition2; bool bcondition3; bool bcondition4; int ncount; //计数器 int[,] neighbour = new int[5, 5]; //5×5相邻区域像素值 bmodified = true; while (bmodified) { bmodified = false; //由于使用5×5的结构元素,为防止越界,所以不处理外围的几行和几列像素 for (j = 2; j < lheight - 2; j++) { for (i = 2; i < lwidth - 2; i++) { bcondition1 = false; bcondition2 = false; bcondition3 = false; bcondition4 = false; if (bmpobj.getpixel(i, j).r > dggrayvalue) { if (bmpobj.getpixel(i, j).r < 255) bmpobj.setpixel(i, j, color.white); continue; } //获得当前点相邻的5×5区域内像素值,白色用0代表,黑色用1代表 for (m = 0; m < 5; m++) { for (n = 0; n < 5; n++) { neighbour[m, n] = bmpobj.getpixel(i + m - 2, j + n - 2).r < dggrayvalue ? 1 : 0; } } //逐个判断条件。 //判断2<=nz(p1)<=6 ncount = neighbour[1, 1] + neighbour[1, 2] + neighbour[1, 3] + neighbour[2, 1] + neighbour[2, 3] + +neighbour[3, 1] + neighbour[3, 2] + neighbour[3, 3]; if (ncount >= 2 && ncount <= 6) { bcondition1 = true; } //判断z0(p1)=1 ncount = 0; if (neighbour[1, 2] == 0 && neighbour[1, 1] == 1) ncount++; if (neighbour[1, 1] == 0 && neighbour[2, 1] == 1) ncount++; if (neighbour[2, 1] == 0 && neighbour[3, 1] == 1) ncount++; if (neighbour[3, 1] == 0 && neighbour[3, 2] == 1) ncount++; if (neighbour[3, 2] == 0 && neighbour[3, 3] == 1) ncount++; if (neighbour[3, 3] == 0 && neighbour[2, 3] == 1) ncount++; if (neighbour[2, 3] == 0 && neighbour[1, 3] == 1) ncount++; if (neighbour[1, 3] == 0 && neighbour[1, 2] == 1) ncount++; if (ncount == 1) bcondition2 = true; //判断p2*p4*p8=0 or z0(p2)!=1 if (neighbour[1, 2] * neighbour[2, 1] * neighbour[2, 3] == 0) { bcondition3 = true; } else { ncount = 0; if (neighbour[0, 2] == 0 && neighbour[0, 1] == 1) ncount++; if (neighbour[0, 1] == 0 && neighbour[1, 1] == 1) ncount++; if (neighbour[1, 1] == 0 && neighbour[2, 1] == 1) ncount++; if (neighbour[2, 1] == 0 && neighbour[2, 2] == 1) ncount++; if (neighbour[2, 2] == 0 && neighbour[2, 3] == 1) ncount++; if (neighbour[2, 3] == 0 && neighbour[1, 3] == 1) ncount++; if (neighbour[1, 3] == 0 && neighbour[0, 3] == 1) ncount++; if (neighbour[0, 3] == 0 && neighbour[0, 2] == 1) ncount++; if (ncount != 1) bcondition3 = true; } //判断p2*p4*p6=0 or z0(p4)!=1 if (neighbour[1, 2] * neighbour[2, 1] * neighbour[3, 2] == 0) { bcondition4 = true; } else { ncount = 0; if (neighbour[1, 1] == 0 && neighbour[1, 0] == 1) ncount++; if (neighbour[1, 0] == 0 && neighbour[2, 0] == 1) ncount++; if (neighbour[2, 0] == 0 && neighbour[3, 0] == 1) ncount++; if (neighbour[3, 0] == 0 && neighbour[3, 1] == 1) ncount++; if (neighbour[3, 1] == 0 && neighbour[3, 2] == 1) ncount++; if (neighbour[3, 2] == 0 && neighbour[2, 2] == 1) ncount++; if (neighbour[2, 2] == 0 && neighbour[1, 2] == 1) ncount++; if (neighbour[1, 2] == 0 && neighbour[1, 1] == 1) ncount++; if (ncount != 1) bcondition4 = true; } if (bcondition1 && bcondition2 && bcondition3 && bcondition4) { bmpobj.setpixel(i, j, color.white); bmodified = true; } else { bmpobj.setpixel(i, j, color.black); } } } } // 复制细化后的图像 // bmpobj = newbmp; } /// <summary> /// 锐化要启用不安全代码编译 /// </summary> /// <param name="val">锐化程度。取值[0,1]。值越大锐化程度越高</param> /// <returns>锐化后的图像</returns> public void sharpen(float val) { int w = bmpobj.width; int h = bmpobj.height; bitmap bmprtn = new bitmap(w, h, pixelformat.format24bpprgb); bitmapdata srcdata = bmpobj.lockbits(new rectangle(0, 0, w, h), imagelockmode.readonly, pixelformat.format24bpprgb); bitmapdata dstdata = bmprtn.lockbits(new rectangle(0, 0, w, h), imagelockmode.writeonly, pixelformat.format24bpprgb); unsafe { byte* pin = (byte*)srcdata.scan0.topointer(); byte* pout = (byte*)dstdata.scan0.topointer(); int stride = srcdata.stride; byte* p; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { //取周围9点的值。位于边缘上的点不做改变。 if (x == 0 || x == w - 1 || y == 0 || y == h - 1) { //不做 pout[0] = pin[0]; pout[1] = pin[1]; pout[2] = pin[2]; } else { int r1, r2, r3, r4, r5, r6, r7, r8, r0; int g1, g2, g3, g4, g5, g6, g7, g8, g0; int b1, b2, b3, b4, b5, b6, b7, b8, b0; float vr, vg, vb; //左上 p = pin - stride - 3; r1 = p[2]; g1 = p[1]; b1 = p[0]; //正上 p = pin - stride; r2 = p[2]; g2 = p[1]; b2 = p[0]; //右上 p = pin - stride + 3; r3 = p[2]; g3 = p[1]; b3 = p[0]; //左侧 p = pin - 3; r4 = p[2]; g4 = p[1]; b4 = p[0]; //右侧 p = pin + 3; r5 = p[2]; g5 = p[1]; b5 = p[0]; //右下 p = pin + stride - 3; r6 = p[2]; g6 = p[1]; b6 = p[0]; //正下 p = pin + stride; r7 = p[2]; g7 = p[1]; b7 = p[0]; //右下 p = pin + stride + 3; r8 = p[2]; g8 = p[1]; b8 = p[0]; //自己 p = pin; r0 = p[2]; g0 = p[1]; b0 = p[0]; vr = (float)r0 - (float)(r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8) / 8; vg = (float)g0 - (float)(g1 + g2 + g3 + g4 + g5 + g6 + g7 + g8) / 8; vb = (float)b0 - (float)(b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8) / 8; vr = r0 + vr * val; vg = g0 + vg * val; vb = b0 + vb * val; if (vr > 0) { vr = math.min(255, vr); } else { vr = math.max(0, vr); } if (vg > 0) { vg = math.min(255, vg); } else { vg = math.max(0, vg); } if (vb > 0) { vb = math.min(255, vb); } else { vb = math.max(0, vb); } pout[0] = (byte)vb; pout[1] = (byte)vg; pout[2] = (byte)vr; } pin += 3; pout += 3; }// end of x pin += srcdata.stride - w * 3; pout += srcdata.stride - w * 3; } // end of y } bmpobj.unlockbits(srcdata); bmprtn.unlockbits(dstdata); bmpobj = bmprtn; } /// <summary> /// 图片二值化 /// </summary> /// <param name="hsb"></param> public void bitmapto1bpp(double hsb) { int w = bmpobj.width; int h = bmpobj.height; bitmap bmp = new bitmap(w, h, pixelformat.format1bppindexed); bitmapdata data = bmp.lockbits(new rectangle(0, 0, w, h), imagelockmode.readwrite, pixelformat.format1bppindexed); for (int y = 0; y < h; y++) { byte[] scan = new byte[(w + 7) / 8]; for (int x = 0; x < w; x++) { color c = bmpobj.getpixel(x, y); if (c.getbrightness() >= hsb) scan[x / 8] |= (byte)(0x80 >> (x % 8)); } marshal.copy(scan, 0, (intptr)((int)data.scan0 + data.stride * y), scan.length); } bmp.unlockbits(data); bmpobj = bmp; } } }
希望本文所述对大家的c#程序设计有所帮助。