欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python爬虫实现爬取百度百科词条功能实例

程序员文章站 2023-11-20 16:43:16
本文实例讲述了python爬虫实现爬取百度百科词条功能。分享给大家供大家参考,具体如下: 爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组...

本文实例讲述了python爬虫实现爬取百度百科词条功能。分享给大家供大家参考,具体如下:

爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。爬虫从一个或若干初始网页的url开始,获得初始网页上的url,在抓取网页的过程中,不断从当前页面上抽取新的url放入队列,直到满足系统的一定停止条件。爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的url队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页url,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索。常见的爬虫框架有scrapy等。

自定义爬虫程序一般包含:url管理器、网页下载器、网页解析器、输出处理器。

以下我写了一个爬取百度百科词条的实例。

爬虫主程序入口

from crawler_test.html_downloader import urldownloader
from crawler_test.html_outer import htmlouter
from crawler_test.html_parser import htmlparser
from crawler_test.url_manager import urlmanager
# 爬虫主程序入口
class maincrawler():
  def __init__(self):
    # 初始值,实例化四大处理器:url管理器,下载器,解析器,输出器
    self.urls = urlmanager()
    self.downloader = urldownloader()
    self.parser = htmlparser()
    self.outer = htmlouter()
  # 开始爬虫方法
  def start_craw(self, main_url):
    print('爬虫开始...')
    count = 1
    self.urls.add_new_url(main_url)
    while self.urls.has_new_url():
      try:
        new_url = self.urls.get_new_url()
        print('爬虫%d,%s' % (count, new_url))
        html_cont = self.downloader.down_load(new_url)
        new_urls, new_data = self.parser.parse(new_url, html_cont)
        # 将解析出的url放入url管理器,解析出的数据放入输出器中
        self.urls.add_new_urls(new_urls)
        self.outer.conllect_data(new_data)
        if count >= 10:# 控制爬取的数量
          break
        count += 1
      except:
        print('爬虫失败一条')
    self.outer.output()
    print('爬虫结束。')
if __name__ == '__main__':
  main_url = 'https://baike.baidu.com/item/python/407313'
  mc = maincrawler()
  mc.start_craw(main_url)

url管理器

# url管理器
class urlmanager():
  def __init__(self):
    self.new_urls = set() # 待爬取
    self.old_urls = set() # 已爬取
  # 添加一个新的url
  def add_new_url(self, url):
    if url is none:
      return
    elif url not in self.new_urls and url not in self.old_urls:
      self.new_urls.add(url)
  # 批量添加url
  def add_new_urls(self, urls):
    if urls is none or len(urls) == 0:
      return
    else:
      for url in urls:
        self.add_new_url(url)
  # 判断是否有url
  def has_new_url(self):
    return len(self.new_urls) != 0
  # 从待爬取的集合中获取一个url
  def get_new_url(self):
    new_url = self.new_urls.pop()
    self.old_urls.add(new_url)
    return new_url

网页下载器

from urllib import request
# 网页下载器
class urldownloader():
  def down_load(self, url):
    if url is none:
      return none
    else:
      rt = request.request(url=url, method='get')   # 发get请求
      with request.urlopen(rt) as rp:         # 打开网页
        if rp.status != 200:
          return none
        else:
          return rp.read()            # 读取网页内容

网页解析器

import re
from urllib import parse
from bs4 import beautifulsoup
# 网页解析器,使用beautifulsoup
class htmlparser():
  # 每个词条中,可以有多个超链接
  # main_url指url公共部分,如“https://baike.baidu.com/”
  def _get_new_url(self, main_url, soup):
    # baike.baidu.com/
    # <a target="_blank" href="/item/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a8%8b%e5%ba%8f%e8%ae%be%e8%ae%a1%e8%af%ad%e8%a8%80" rel="external nofollow" >计算机程序设计语言</a>
    new_urls = set()
    # 解析出main_url之后的url部分
    child_urls = soup.find_all('a', href=re.compile(r'/item/(\%\w{2})+'))
    for child_url in child_urls:
      new_url = child_url['href']
      # 再拼接成完整的url
      full_url = parse.urljoin(main_url, new_url)
      new_urls.add(full_url)
    return new_urls
  # 每个词条中,只有一个描述内容,解析出数据(词条,内容)
  def _get_new_data(self, main_url, soup):
    new_datas = {}
    new_datas['url'] = main_url
    # <dd class="lemmawgt-lemmatitle-title"><h1>计算机程序设计语言</h1>...
    new_datas['title'] = soup.find('dd', class_='lemmawgt-lemmatitle-title').find('h1').get_text()
    # class="lemma-summary" label-module="lemmasummary"...
    new_datas['content'] = soup.find('div', attrs={'label-module': 'lemmasummary'},
                     class_='lemma-summary').get_text()
    return new_datas
  # 解析出url和数据(词条,内容)
  def parse(self, main_url, html_cont):
    if main_url is none or html_cont is none:
      return
    soup = beautifulsoup(html_cont, 'lxml', from_encoding='utf-8')
    new_url = self._get_new_url(main_url, soup)
    new_data = self._get_new_data(main_url, soup)
    return new_url, new_data

输出处理器

# 输出器
class htmlouter():
  def __init__(self):
    self.datas = []
  # 先收集数据
  def conllect_data(self, data):
    if data is none:
      return
    self.datas.append(data)
    return self.datas
  # 输出为html
  def output(self, file='output_html.html'):
    with open(file, 'w', encoding='utf-8') as fh:
      fh.write('<html>')
      fh.write('<head>')
      fh.write('<meta charset="utf-8"></meta>')
      fh.write('<title>爬虫数据结果</title>')
      fh.write('</head>')
      fh.write('<body>')
      fh.write(
        '<table style="border-collapse:collapse; border:1px solid gray; width:80%; word-break:break-all; margin:20px auto;">')
      fh.write('<tr>')
      fh.write('<th style="border:1px solid black; width:35%;">url</th>')
      fh.write('<th style="border:1px solid black; width:15%;">词条</th>')
      fh.write('<th style="border:1px solid black; width:50%;">内容</th>')
      fh.write('</tr>')
      for data in self.datas:
        fh.write('<tr>')
        fh.write('<td style="border:1px solid black">{0}</td>'.format(data['url']))
        fh.write('<td style="border:1px solid black">{0}</td>'.format(data['title']))
        fh.write('<td style="border:1px solid black">{0}</td>'.format(data['content']))
        fh.write('</tr>')
      fh.write('</table>')
      fh.write('</body>')
      fh.write('</html>')

效果(部分):

Python爬虫实现爬取百度百科词条功能实例

更多关于python相关内容可查看本站专题:《python socket编程技巧总结》、《python正则表达式用法总结》、《python数据结构与算法教程》、《python函数使用技巧总结》、《python字符串操作技巧汇总》、《python入门与进阶经典教程》及《python文件与目录操作技巧汇总

希望本文所述对大家python程序设计有所帮助。