欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

Python科学计算 - Numpy快速入门

程序员文章站 2022-03-17 08:34:43
...

Numpy是什么?

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。它可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。


NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。


多维数组


多维数组的类型是:numpy.ndarray


使用numpy.array方法


以list或tuple变量为参数产生一维数组:

>>> print(np.array([1,2,3,4]))
[1 2 3 4]
>>> print(np.array((1.2,2,3,4)))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))


以list或tuple变量为元素产生二维数组:

>>> print(np.array([[1,2],[3,4]]))
[[1 2]
 [3 4]]


指定数据类型

例如numpy.int32, numpy.int16, and numpy.float64等:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法

>>> print(np.arange(15))
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))

>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))

使用numpy.linspace方法

例如,在从1到3中产生9个数:

>>> print(np.linspace(1,3,10))
[ 1.          1.22222222  1.44444444  1.66666667  1.88888889  2.11111111
  2.33333333  2.55555556  2.77777778  3.        ]

构造特定的矩阵

使用numpy.zeros,numpy.ones,numpy.eye

可以构造特定的矩阵

>>> print(np.zeros((3,4)))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print(np.ones((4,3)))
[[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]
>>> print(np.eye(4))
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]

创建一个三维数组:

>>> print(np.ones((3,3,3)))
[[[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]
 [[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]
 [[ 1.  1.  1.]
  [ 1.  1.  1.]
  [ 1.  1.  1.]]]

获取数组的属性

>>> a = np.zeros((2,3,2))
>>> print(a.ndim)   #数组的维数
3
>>> print(a.shape)  #数组每一维的大小
(2, 3, 2)
>>> print(a.size)   #数组的元素数
12
>>> print(a.dtype)  #元素类型
float64
>>> print(a.itemsize)  #每个元素所占的字节数
8

数组索引,切片,赋值

>>>a = np.array( [[2,3,4],[5,6,7]] )
>>> print(a)
[[2 3 4]
 [5 6 7]]
>>> print(a[1,2]) #index从0开始
7
>>> print a[1,:]
[5 6 7]
>>> print(a[1,1:2])
[6]
>>> a[1,:] = [8,9,10] #直接赋值
>>> print(a)
[[ 2  3  4]
 [ 8  9 10]]

使用for操作元素

>>> for x in np.linspace(1,3,3):
...     print(x)
...
1.0
2.0
3.0

基本的数组运算

先构造数组a、b:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(a)
[[ 1.  1.]
 [ 1.  1.]]
>>> print(b)
[[ 1.  0.]
 [ 0.  1.]]

数组的加减乘除

>>> print(a > 2)
[[False False]
 [False False]]
>>> print(a+b)
[[ 2.  1.]
 [ 1.  2.]]
>>> print(a-b)
[[ 0.  1.]
 [ 1.  0.]]
>>> print(b*2)
[[ 2.  0.]
 [ 0.  2.]]
>>> print((a*2)*(b*2))
[[ 4.  0.]
 [ 0.  4.]]
>>> print(b/(a*2))
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print((b*2)**4)
[[ 16.  0]
 [ 0  16.]]

使用数组对象自带的方法

>>> a.sum() #a的元素个数
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0
使用numpy下的方法
>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])

合并数组

使用numpy下的vstack和hstack函数:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print(np.vstack((a,b)))
#顾名思义 v--vertical  垂直
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print(np.hstack((a,b)))
#顾名思义 h--horizonal 水平
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

看一下这两个函数有没有涉及到浅拷贝这种问题:

>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

可以看到,a、b中元素的改变并未影响c。


深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

>>> a = np.ones((2,2))
>>> b = a
>>> print(b is a)
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

基本的矩阵运算

转置:

>>> a = np.array([[1,0],[2,3]])
>>> print(a)
[[1 0]
 [2 3]]
>>> print(a.transpose())
[[1 2]
 [0 3]]

numpy.linalg关于矩阵运算的方法

>>> import numpy.linalg as nplg1

特征值、特征向量:

>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

矩阵对象

numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。


class numpy.matrix(data,dtype,copy):


返回一个矩阵,其中data为ndarray对象或者字符形式;


dtype:为data的type;


copy:为bool类型。

>>> a = np.matrix('1 2 7; 3 4 8; 5 6 9')
>>> a             #矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩
matrix([[1, 2, 7],       #阵的元素之间必须以空格隔开。
[3, 4, 8],
[5, 6, 9]])
>>> b=np.array([[1,5],[3,2]])
>>> x=np.matrix(b)   #矩阵中的data可以为数组对象。
>>> x
matrix([[1, 5],
[3, 2]])

矩阵对象的属性

matrix.T transpose

:返回矩阵的转置矩阵


matrix.H hermitian (conjugate) transpose

:返回复数矩阵的共轭元素矩阵


matrix.I inverse

:返回矩阵的逆矩阵


matrix.A base array

:返回矩阵基于的数组


矩阵对象的方法


all([axis, out]) :沿给定的轴判断矩阵所有元素是否为真(非0即为真)


any([axis, out]) :沿给定轴的方向判断矩阵元素是否为真,只要一个元素为真则为真。


argmax([axis, out]) :沿给定轴的方向返回最大元素的索引(最大元素的位置).


argmin([axis, out]): 沿给定轴的方向返回最小元素的索引(最小元素的位置)


argsort([axis, kind, order]) :返回排序后的索引矩阵


astype(dtype[, order, casting, subok, copy]):将该矩阵数据复制,且数据类型为指定的数据类型


byteswap(inplace) Swap the bytes of the array elements


choose(choices[, out, mode]) :根据给定的索引得到一个新的数据矩阵(索引从choices给定)


clip(a_min, a_max[, out]) :返回新的矩阵,比给定元素大的元素为a_max,小的为a_min


compress(condition[, axis, out]) :返回满足条件的矩阵


conj() :返回复数的共轭复数


conjugate() :返回所有复数的共轭复数元素


copy([order]) :复制一个矩阵并赋给另外一个对象,b=a.copy()


cumprod([axis, dtype, out]) :返回沿指定轴的元素累积矩阵


cumsum([axis, dtype, out]) :返回沿指定轴的元素累积和矩阵


diagonal([offset, axis1, axis2]) :返回矩阵中对角线的数据


dot(b[, out]) :两个矩阵的点乘


dump(file) :将矩阵存储为指定文件,可以通过pickle.loads()或者numpy.loads()如:a.dump(‘d:\a.txt’)


dumps() :将矩阵的数据转存为字符串.


fill(value) :将矩阵中的所有元素填充为指定的value


flatten([order]) :将矩阵转化为一个一维的形式,但是还是matrix对象


getA() :返回自己,但是作为ndarray返回


getA1():返回一个扁平(一维)的数组(ndarray)


getH() :返回自身的共轭复数转置矩阵


getI() :返回本身的逆矩阵


getT() :返回本身的转置矩阵


max([axis, out]) :返回指定轴的最大值


mean([axis, dtype, out]) :沿给定轴方向,返回其均值


min([axis, out]) :返回指定轴的最小值


nonzero() :返回非零元素的索引矩阵


prod([axis, dtype, out]) :返回指定轴方型上,矩阵元素的乘积.


ptp([axis, out]) :返回指定轴方向的最大值减去最小值.


put(indices, values[, mode]) :用给定的value替换矩阵本身给定索引(indices)位置的值


ravel([order]) :返回一个数组,该数组是一维数组或平数组


repeat(repeats[, axis]) :重复矩阵中的元素,可以沿指定轴方向重复矩阵元素,repeats为重复次数


reshape(shape[, order]) :改变矩阵的大小,如:reshape([2,3])


resize(new_shape[, refcheck]) :改变该数据的尺寸大小


round([decimals, out]) :返回指定精度后的矩阵,指定的位数采用四舍五入,若为1,则保留一位小数


searchsorted(v[, side, sorter]) :搜索V在矩阵中的索引位置


sort([axis, kind, order]) :对矩阵进行排序或者按轴的方向进行排序


squeeze([axis]) :移除长度为1的轴


std([axis, dtype, out, ddof]) :沿指定轴的方向,返回元素的标准差.


sum([axis, dtype, out]) :沿指定轴的方向,返回其元素的总和


swapaxes(axis1, axis2):交换两个轴方向上的数据.


take(indices[, axis, out, mode]) :提取指定索引位置的数据,并以一维数组或者矩阵返回(主要取决axis)


tofile(fid[, sep, format]) :将矩阵中的数据以二进制写入到文件


tolist() :将矩阵转化为列表形式


tostring([order]):将矩阵转化为python的字符串.


trace([offset, axis1, axis2, dtype, out]):返回对角线元素之和


transpose(*axes) :返回矩阵的转置矩阵,不改变原有矩阵


var([axis, dtype, out, ddof]) :沿指定轴方向,返回矩阵元素的方差


view([dtype, type]) :生成一个相同数据,但是类型为指定新类型的矩阵。


举例

>>> a = np.asmatrix('0 2 7; 3 4 8; 5 0 9')
>>> a.all()
False
>>> a.all(axis=0)
matrix([[False, False,  True]], dtype=bool)
>>> a.all(axis=1)
matrix([[False],
[ True],
[False]], dtype=bool)

Astype方法

>>> a.astype(float)
matrix([[ 12.,   3.,   5.],
[ 32.,  23.,   9.],
[ 10., -14.,  78.]])

Argsort方法

>>> a=np.matrix('12 3 5; 32 23 9; 10 -14 78')
>>> a.argsort()
matrix([[1, 2, 0],
[2, 1, 0],
[1, 0, 2]])

Clip方法

>>> a
matrix([[ 12,   3,   5],
[ 32,  23,   9],
[ 10, -14,  78]])
>>> a.clip(12,32)
matrix([[12, 12, 12],
[32, 23, 12],
[12, 12, 32]])


Cumprod方法

 
>>> a.cumprod(axis=1)
matrix([[    12,     36,    180],
[    32,    736,   6624],
[    10,   -140, -10920]])

Cumsum方法

>>> a.cumsum(axis=1)
matrix([[12, 15, 20],
[32, 55, 64],
[10, -4, 74]])


Tolist方法

>>> b.tolist()
[[12, 3, 5], [32, 23, 9], [10, -14, 78]]

Tofile方法

>>> b.tofile('d:\\b.txt')

compress()方法

>>> from numpy import *

>>> a = array([10, 20, 30, 40])
>>> condition = (a > 15) & (a >> condition
array([False, True, True, False], dtype=bool)
>>> a.compress(condition)
array([20, 30])
>>> a[condition]                                      # same effect
array([20, 30])
>>> compress(a >= 30, a)                              # this form a
so exists
array([30, 40])
>>> b = array([[10,20,30],[40,50,60]])
>>> b.compress(b.ravel() >= 22)
array([30, 40, 50, 60])
>>> x = array([3,1,2])
>>> y = array([50, 101])
>>> b.compress(x >= 2, axis=1)                       # illustrates 
the use of the axis keyword
array([[10, 30],
[40, 60]])
>>> b.compress(y >= 100, axis=0)
array([[40, 50, 60]])