欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python3使用pandas模块读写excel操作示例

程序员文章站 2023-11-17 20:28:46
本文实例讲述了Python3使用pandas模块读写excel操作。分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或...

本文实例讲述了Python3使用pandas模块读写excel操作。分享给大家供大家参考,具体如下:

前言

Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据。本文介绍如何用pandas读写excel。

1. 读取excel

读取excel主要通过read_excel函数实现,除了pandas还需要安装第三方库xlrd

pd.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
'''
该函数主要的参数为io、sheetname、header、names、encoding。
io:excel文件,可以是文件路径、文件网址、file-like对象、xlrd workbook;
sheetname:返回指定的sheet,参数可以是字符串(sheet名)、整型(sheet索引)、list(元素为字符串和整型,返回字典{'key':'sheet'})、none(返回字典,全部sheet);
header:指定数据表的表头,参数可以是int、list of ints,即为索引行数为表头;
names:返回指定name的列,参数为array-like对象。
encoding:关键字参数,指定以何种编码读取。
该函数返回pandas中的DataFrame或dict of DataFrame对象,利用DataFrame的相关操作即可读取相应的数据。
'''
#代码示例:
import pandas as pd
excel_path = 'example.xlsx'
d = pd.read_excel(excel_path, sheetname=None)
print(d['sheet1'].example_column_name)

2. 写入excel

写入excel主要通过pandas构造DataFrame,调用to_excel方法实现。

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)
'''
该函数主要参数为:excel_writer。
excel_writer:写入的目标excel文件,可以是文件路径、ExcelWriter对象;
sheet_name:被写入的sheet名称,string类型,默认为'sheet1';
na_rep:缺失值表示,string类型;
header:是否写表头信息,布尔或list of string类型,默认为True;
index:是否写行号,布尔类型,默认为True;
encoding:指定写入编码,string类型。
'''
import pandas as pd
writer = pd.ExcelWriter('output.xlsx')
df1 = pd.DataFrame(data={'col1':[1,1], 'col2':[2,2]})
df1.to_excel(writer,'Sheet1')
writer.save()

更多关于Python相关内容感兴趣的读者可查看本站专题:《》、《》、《》、《》、《》、《》及《》

希望本文所述对大家Python程序设计有所帮助。