欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

实例分析python3实现并发访问水平切分表

程序员文章站 2023-11-15 17:00:28
场景说明 假设有一个mysql表被水平切分,分散到多个host中,每个host拥有n个切分表。 如果需要并发去访问这些表,快速得到查询结果, 应该怎么做呢?...

场景说明

假设有一个mysql表被水平切分,分散到多个host中,每个host拥有n个切分表。

如果需要并发去访问这些表,快速得到查询结果, 应该怎么做呢?

这里提供一种方案,利用python3的asyncio异步io库及aiomysql异步库去实现这个需求。

代码演示

import logging
import random
import asynciofrom aiomysql 
import create_pool
# 假设mysql表分散在8个host, 每个host有16张子表
tbles = {  "192.168.1.01": "table_000-015",
# 000-015表示该ip下的表明从table_000一直连续到table_015
  "192.168.1.02": "table_016-031", 
   "192.168.1.03": "table_032-047",  
    "192.168.1.04": "table_048-063", 
     "192.168.1.05": "table_064-079",  
     "192.168.1.06": "table_080-095", 
      "192.168.1.07": "table_096-0111", 
       "192.168.1.08": "table_112-0127",
}
user = "xxx"passwd = "xxxx"# wrapper函数,用于捕捉异常def query_wrapper(func):
  async def wrapper(*args, **kwargs):
    try:
      await func(*args, **kwargs)    except exception as e:
      print(e)  return wrapper
      # 实际的sql访问处理函数,通过aiomysql实现异步非阻塞请求@
      query_wrapperasync def query_do_something(ip, db, table):
  async with create_pool(host=ip, db=db, user=user, password=passwd) as pool:
    async with pool.get() as conn:
      async with conn.cursor() as cur:
        sql = ("select xxx from {} where xxxx")
        await cur.execute(sql.format(table))
        res = await cur.fetchall()    
 # then do something...# 生成sql访问队列, 队列的每个元素包含要对某个表进行访问的函数及参数def gen_tasks():
  tasks = []  for ip, tbls in tbles.items():
    cols = re.split('_|-', tbls)
    tblpre = "_".join(cols[:-2])
    min_num = int(cols[-2])
    max_num = int(cols[-1])   
      for num in range(min_num, max_num+1):
      tasks.append(
        (query_do_something, ip, 'your_dbname', '{}_{}'.format(tblpre, num))
      )
 
  random.shuffle(tasks)  
   return tasks# 按批量运行sql访问请求队列def run_tasks(tasks, batch_len):
  try:  
    for idx in range(0, len(tasks), batch_len):
      batch_tasks = tasks[idx:idx+batch_len]
      logging.info("current batch, start_idx:%s len:%s" % (idx, len(batch_tasks))) 
            for i in range(0, len(batch_tasks)):
        l = batch_tasks[i]
        batch_tasks[i] = asyncio.ensure_future(
          l[0](*l[1:])
        )
      loop.run_until_complete(asyncio.gather(*batch_tasks)) 
       except exception as e:
    logging.warn(e)# main方法, 通过asyncio实现函数异步调用def main():
  loop = asyncio.get_event_loop()
 
  tasks = gen_tasks()
  batch_len = len(tbles.keys()) * 5  # all up to you
  run_tasks(tasks, batch_len)
 
  loop.close()

以上就是本次相关内容的全部实例代码,大家可以本地测试以下,感谢你对的支持。