Unity3D实现简易五子棋源码
程序员文章站
2023-11-14 19:17:04
本文实例为大家分享了unity3d简易五子棋源码,供大家参考,具体内容如下
unity3d部分
对c#源码进行了改写简化:
using unityengine;
usi...
本文实例为大家分享了unity3d简易五子棋源码,供大家参考,具体内容如下
对c#源码进行了改写简化:
using unityengine; using system.collections; public class chess : monobehaviour { //四个锚点位置,用于计算棋子落点 public gameobject lefttop; public gameobject righttop; public gameobject leftbottom; public gameobject rightbottom; //主摄像机 public camera cam; //锚点在屏幕上的映射位置 vector3 ltpos; vector3 rtpos; vector3 lbpos; vector3 rbpos; vector3 pointpos;//当前点选的位置 float gridwidth = 1; //棋盘网格宽度 float gridheight = 1; //棋盘网格高度 float mingriddis; //网格宽和高中较小的一个 vector2[,] chesspos; //存储棋盘上所有可以落子的位置 int[,] chessstate; //存储棋盘位置上的落子状态 enum turn { black, white }; turn chessturn; //落子顺序 public texture2d white; //白棋子 public texture2d black; //黑棋子 public texture2d blackwin; //白子获胜提示图 public texture2d whitewin; //黑子获胜提示图 int winner = 0; //获胜方,1为黑子,-1为白子 bool isplaying = true; //是否处于对弈状态 void start() { chesspos = new vector2[15, 15]; chessstate = new int[17, 16];/*原来定义是new int[15, 15],这里将原来数组chessstate上、下和右边各加一排数据, 也就相当于在棋盘的上、下和右边各填加一排隐形的棋道。原因后面解释*/ chessturn = turn.black; //计算锚点位置 ltpos = cam.worldtoscreenpoint(lefttop.transform.position); rtpos = cam.worldtoscreenpoint(righttop.transform.position); lbpos = cam.worldtoscreenpoint(leftbottom.transform.position); rbpos = cam.worldtoscreenpoint(rightbottom.transform.position); //计算网格宽度 gridwidth = (rtpos.x - ltpos.x) / 14; gridheight = (ltpos.y - lbpos.y) / 14; mingriddis = gridwidth < gridheight ? gridwidth : gridheight; //计算落子点位置 for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { chesspos[i, j] = new vector2(lbpos.x + gridwidth * j, lbpos.y + gridheight * i);//这里和源程序定义稍有不同,这里i定位行,j为列 } } } void update() { //检测鼠标输入并确定落子状态 if (isplaying && input.getmousebuttondown(0)) { pointpos = input.mouseposition; for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { //找到最接近鼠标点击位置的落子点,如果空则落子 if (dis(pointpos, chesspos[i, j]) < mingriddis / 2 && chessstate[i + 1, j] == 0)/*这里chessstate行要加1, 因为上、下和右边各多加了一排,要空出来,chesspos的i行对应chessstate的i+1行*/ { //根据下棋顺序确定落子颜色 chessstate[i + 1, j] = chessturn == turn.black ? 1 : -1;//同理 //落子成功,更换下棋顺序 chessturn = chessturn == turn.black ? turn.white : turn.black; } } } //调用判断函数,确定是否有获胜方 int re = result(); if (re == 1) { debug.log("黑棋胜"); winner = 1; isplaying = false; } else if (re == -1) { debug.log("白棋胜"); winner = -1; isplaying = false; } } //按下空格重新开始游戏 if (input.getkeydown(keycode.space)) { for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { chessstate[i + 1, j] = 0;//同理 } } isplaying = true; chessturn = turn.black; winner = 0; } } //计算平面距离函数 float dis(vector3 mpos, vector2 gridpos) { return mathf.sqrt(mathf.pow(mpos.x - gridpos.x, 2) + mathf.pow(mpos.y - gridpos.y, 2)); } void ongui() { //绘制棋子 for (int i = 0; i < 15; i++) { for (int j = 0; j < 15; j++) { if (chessstate[i + 1, j] == 1)//同理 { gui.drawtexture(new rect(chesspos[i, j].x - gridwidth / 2, screen.height - chesspos[i, j].y - gridheight / 2, gridwidth, gridheight), black); } if (chessstate[i + 1, j] == -1)//同理 { gui.drawtexture(new rect(chesspos[i, j].x - gridwidth / 2, screen.height - chesspos[i, j].y - gridheight / 2, gridwidth, gridheight), white); } } } //根据获胜状态,弹出相应的胜利图片 if (winner == 1) { gui.drawtexture(new rect(screen.width * 0.25f, screen.height * 0.25f, screen.width * 0.5f, screen.height * 0.25f), blackwin); } if (winner == -1) gui.drawtexture(new rect(screen.width * 0.25f, screen.height * 0.25f, screen.width * 0.5f, screen.height * 0.25f), whitewin); } //改写result函数 /*解释:c语言中,这样的表达式:chessstate[i]&&chessstate[i+1]&&chessstate[i+2]&&chessstate[i+3]&&chessstate[i+4],如果 * chessstate[i]为false,则不管b是真是假或者是异常都不会运行,利用这一点,在chessstate的右边、上边和下边各加一行为0的数据, * 这样在判断连续五个棋子的状态时,就不用担心chessstate数组的索引值超出范围。例如:chessstate[i+4]的索引值i+4刚好超出范围, * 通过在原来数组chessstate的上、下和右边个添加一排为0的数,这样chessstate[i+3]==0,于是就可以避免引起异常,从而简化代码*/ int result() { int flag = 0; if (chessturn == turn.white) { for (int i = 1; i <= 15; i++)//这里的i从1开始 { for (int j = 0; j <= 14; j++)//j不用变 { if ((chessstate[i, j] == 1 && chessstate[i, j + 1] == 1 && chessstate[i, j + 2] == 1 && chessstate[i, j + 3] == 1 && chessstate[i, j + 4] == 1)//向右横向 || (chessstate[i, j] == 1 && chessstate[i + 1, j] == 1 && chessstate[i + 2, j] == 1 && chessstate[i + 3, j] == 1 && chessstate[i + 4, j] == 1)//向上横向 || (chessstate[i, j] == 1 && chessstate[i + 1, j + 1] == 1 && chessstate[i + 2, j + 2] == 1 && chessstate[i + 3, j + 3] == 1 && chessstate[i + 4, j + 4] == 1)//向右上斜向 || (chessstate[i, j] == 1 && chessstate[i - 1, j + 1] == 1 && chessstate[i - 2, j + 2] == 1 && chessstate[i - 3, j + 3] == 1 && chessstate[i - 4, j + 4] == 1))//向右下斜向 { flag = 1; } } } } else if (chessturn == turn.black) { for (int i = 1; i <= 15; i++)//这里的i从1开始 { for (int j = 0; j <= 14; j++) { if ((chessstate[i, j] == -1 && chessstate[i, j + 1] == -1 && chessstate[i, j + 2] == -1 && chessstate[i, j + 3] == -1 && chessstate[i, j + 4] == -1) || (chessstate[i, j] == -1 && chessstate[i + 1, j] == -1 && chessstate[i + 2, j] == -1 && chessstate[i + 3, j] == -1 && chessstate[i + 4, j] == -1) || (chessstate[i, j] == -1 && chessstate[i + 1, j + 1] == -1 && chessstate[i + 2, j + 2] == -1 && chessstate[i + 3, j + 3] == -1 && chessstate[i + 4, j + 4] == -1) || (chessstate[i, j] == -1 && chessstate[i - 1, j + 1] == -1 && chessstate[i - 2, j + 2] == -1 && chessstate[i - 3, j + 3] == -1 && chessstate[i - 4, j + 4] == -1)) { flag = -1; } } } } return flag; } }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。