关于初始种子自动选取的区域生长实例(python+opencv)
程序员文章站
2023-11-14 14:49:28
算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。
另...
算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。
另外,不管时初始种子选择还是区域生长,阈值选择很重要。
import cv2 import numpy as np import matplotlib.pyplot as plt #初始种子选择 def originalseed(gray, th): ret, thresh = cv2.cv2.threshold(gray, th, 255, cv2.thresh_binary)#二值图,种子区域(不同划分可获得不同种子) kernel = cv2.getstructuringelement(cv2.morph_ellipse, (3,3))#3×3结构元 thresh_copy = thresh.copy() #复制thresh_a到thresh_copy thresh_b = np.zeros(gray.shape, np.uint8) #thresh_b大小与a相同,像素值为0 seeds = [ ] #为了记录种子坐标 #循环,直到thresh_copy中的像素值全部为0 while thresh_copy.any(): xa_copy, ya_copy = np.where(thresh_copy > 0) #thresh_a_copy中值为255的像素的坐标 thresh_b[xa_copy[0], ya_copy[0]] = 255 #选取第一个点,并将thresh_b中对应像素值改为255 #连通分量算法,先对thresh_b进行膨胀,再和thresh执行and操作(取交集) for i in range(200): dilation_b = cv2.dilate(thresh_b, kernel, iterations=1) thresh_b = cv2.bitwise_and(thresh, dilation_b) #取thresh_b值为255的像素坐标,并将thresh_copy中对应坐标像素值变为0 xb, yb = np.where(thresh_b > 0) thresh_copy[xb, yb] = 0 #循环,在thresh_b中只有一个像素点时停止 while str(thresh_b.tolist()).count("255") > 1: thresh_b = cv2.erode(thresh_b, kernel, iterations=1) #腐蚀操作 x_seed, y_seed = np.where(thresh_b > 0) #取处种子坐标 if x_seed.size > 0 and y_seed.size > 0: seeds.append((x_seed[0], y_seed[0]))#将种子坐标写入seeds thresh_b[xb, yb] = 0 #将thresh_b像素值置零 return seeds #区域生长 def regiongrow(gray, seeds, thresh, p): seedmark = np.zeros(gray.shape) #八邻域 if p == 8: connection = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)] elif p == 4: connection = [(-1, 0), (0, 1), (1, 0), (0, -1)] #seeds内无元素时候生长停止 while len(seeds) != 0: #栈顶元素出栈 pt = seeds.pop(0) for i in range(p): tmpx = pt[0] + connection[i][0] tmpy = pt[1] + connection[i][1] #检测边界点 if tmpx < 0 or tmpy < 0 or tmpx >= gray.shape[0] or tmpy >= gray.shape[1]: continue if abs(int(gray[tmpx, tmpy]) - int(gray[pt])) < thresh and seedmark[tmpx, tmpy] == 0: seedmark[tmpx, tmpy] = 255 seeds.append((tmpx, tmpy)) return seedmark path = "_rg.jpg" img = cv2.imread(path) gray = cv2.cvtcolor(img, cv2.color_bgr2gray) #hist = cv2.calchist([gray], [0], none, [256], [0,256])#直方图 seeds = originalseed(gray, th=253) seedmark = regiongrow(gray, seeds, thresh=3, p=8) #plt.plot(hist) #plt.xlim([0, 256]) #plt.show() cv2.imshow("seedmark", seedmark) cv2.waitkey(0)
以上这篇关于初始种子自动选取的区域生长实例(python+opencv)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。