欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

关于初始种子自动选取的区域生长实例(python+opencv)

程序员文章站 2023-11-14 14:49:28
算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。 另...

算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域)、灰度图直方图、初始种子图、区域生长结果图。

另外,不管时初始种子选择还是区域生长,阈值选择很重要。

import cv2
import numpy as np
import matplotlib.pyplot as plt

#初始种子选择
def originalseed(gray, th):
 ret, thresh = cv2.cv2.threshold(gray, th, 255, cv2.thresh_binary)#二值图,种子区域(不同划分可获得不同种子)
 kernel = cv2.getstructuringelement(cv2.morph_ellipse, (3,3))#3×3结构元

 thresh_copy = thresh.copy() #复制thresh_a到thresh_copy
 thresh_b = np.zeros(gray.shape, np.uint8) #thresh_b大小与a相同,像素值为0

 seeds = [ ] #为了记录种子坐标

 #循环,直到thresh_copy中的像素值全部为0
 while thresh_copy.any():

  xa_copy, ya_copy = np.where(thresh_copy > 0) #thresh_a_copy中值为255的像素的坐标
  thresh_b[xa_copy[0], ya_copy[0]] = 255 #选取第一个点,并将thresh_b中对应像素值改为255

  #连通分量算法,先对thresh_b进行膨胀,再和thresh执行and操作(取交集)
  for i in range(200):
   dilation_b = cv2.dilate(thresh_b, kernel, iterations=1)
   thresh_b = cv2.bitwise_and(thresh, dilation_b)

  #取thresh_b值为255的像素坐标,并将thresh_copy中对应坐标像素值变为0
  xb, yb = np.where(thresh_b > 0)
  thresh_copy[xb, yb] = 0

  #循环,在thresh_b中只有一个像素点时停止
  while str(thresh_b.tolist()).count("255") > 1:
   thresh_b = cv2.erode(thresh_b, kernel, iterations=1) #腐蚀操作

  x_seed, y_seed = np.where(thresh_b > 0) #取处种子坐标
  if x_seed.size > 0 and y_seed.size > 0:
   seeds.append((x_seed[0], y_seed[0]))#将种子坐标写入seeds
  thresh_b[xb, yb] = 0 #将thresh_b像素值置零
 return seeds

#区域生长
def regiongrow(gray, seeds, thresh, p):
 seedmark = np.zeros(gray.shape)
 #八邻域
 if p == 8:
  connection = [(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)]
 elif p == 4:
  connection = [(-1, 0), (0, 1), (1, 0), (0, -1)]

 #seeds内无元素时候生长停止
 while len(seeds) != 0:
  #栈顶元素出栈
  pt = seeds.pop(0)
  for i in range(p):
   tmpx = pt[0] + connection[i][0]
   tmpy = pt[1] + connection[i][1]

   #检测边界点
   if tmpx < 0 or tmpy < 0 or tmpx >= gray.shape[0] or tmpy >= gray.shape[1]:
    continue

   if abs(int(gray[tmpx, tmpy]) - int(gray[pt])) < thresh and seedmark[tmpx, tmpy] == 0:
    seedmark[tmpx, tmpy] = 255
    seeds.append((tmpx, tmpy))
 return seedmark


path = "_rg.jpg"
img = cv2.imread(path)
gray = cv2.cvtcolor(img, cv2.color_bgr2gray)
#hist = cv2.calchist([gray], [0], none, [256], [0,256])#直方图

seeds = originalseed(gray, th=253)
seedmark = regiongrow(gray, seeds, thresh=3, p=8)

#plt.plot(hist)
#plt.xlim([0, 256])
#plt.show()
cv2.imshow("seedmark", seedmark)
cv2.waitkey(0)

关于初始种子自动选取的区域生长实例(python+opencv)

关于初始种子自动选取的区域生长实例(python+opencv)

关于初始种子自动选取的区域生长实例(python+opencv)

关于初始种子自动选取的区域生长实例(python+opencv)

以上这篇关于初始种子自动选取的区域生长实例(python+opencv)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。