欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现蒙特卡罗方法教程

程序员文章站 2023-11-12 22:44:34
蒙特卡罗方法是一种统计模拟方法,由冯·诺依曼和乌拉姆提出,在大量的随机数下,根据概率估计结果,随机数据越多,获得的结果越精确。下面我们将用python实现蒙特卡罗方法。...

蒙特卡罗方法是一种统计模拟方法,由冯·诺依曼和乌拉姆提出,在大量的随机数下,根据概率估计结果,随机数据越多,获得的结果越精确。下面我们将用python实现蒙特卡罗方法。

1.首先我们做一个简单的圆周率的近似计算,在这个过程中我们要用到随机数,因此需要先使用import numpy as np导入numpy库。

2.代码实现:

import numpy as np
 
total = 8000000
count = 0
 
for i in range(total):
 x = np.random.rand()
 y = np.random.rand()
 dis = (x**2+y**2)**0.5
 if dis <= 1:
  count = count+1
pi = 4*count/total
print(pi)

3.在上面的程序中我们用8000000个随机数进行投放,这样得到的结果会更精确一些,运行程序需要一定的时间,最终得到的结果如下

python实现蒙特卡罗方法教程

4.下面我们进行一项简单的应用,下图为我在画图工具中随便画的一个图,我们可以用蒙特卡罗方法来估算图中黑色部分的面积。

python实现蒙特卡罗方法教程

5.上面的图形是不规则的,我们只需知道在投放大量随机数的情况下,随机数在黑色部分出现的概率,再用总面积相乘即可估算黑色部分的面积。我们知道,黑色的rgb编码为(0,0,0),所以需要统计rgb编码为(0,0,0)时随机数的投放概率即可。

6.代码实现:

from pil import image
import numpy as np
 
im = image.open("c:/users/21974/desktop/handwrite2.png")
total = 9000000
count = 0
defin = 0
width = im.size[0]
height = im.size[1]
 
for i in range(total): #用蒙特卡罗方法获得估计值
 x = np.random.randint(0, width-1)
 y = np.random.randint(0, height-1)
 k = im.getpixel((x, y))
 if k[0]+k[1]+k[2] == 0:
  count += 1
print(int(width*height*count/total))
 
for i in range(width): #用遍历获得准确值
 for j in range(height):
  k = im.getpixel((i, j))
  if k[0] + k[1] + k[2] == 0:
   defin += 1
print(defin)

上面的代码可分为两部分,第一个for后面是用蒙特卡罗方法获得的面积的估计值,第二个for后面是用遍历所有像素点的方法获得的面积的精确值,获得两个输出后进行对比。

python实现蒙特卡罗方法教程

我们在上面的程序中采用了9000000个随机数,可以看出两个输出结果相差并不大。