欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python微医挂号网医生数据抓取

程序员文章站 2023-11-12 22:16:04
1. 写在前面 今天要抓取的一个网站叫做微医网站,地址为 ,我们将通过python3爬虫抓取这个网址,然后数据存储到csv里面,为后面的一些分析类的教程做准备。本篇文章...

1. 写在前面

今天要抓取的一个网站叫做微医网站,地址为 ,我们将通过python3爬虫抓取这个网址,然后数据存储到csv里面,为后面的一些分析类的教程做准备。本篇文章主要使用的库为pyppeteer 和 pyquery

首先找到 医生列表页

全国/all/不限/p5 

这个页面显示有 75952 条数据 ,实际测试中,翻页到第38页,数据就加载不出来了,目测后台程序猿没有把数据返回,不过为了学习,我们忍了。

Python微医挂号网医生数据抓取

2. 页面url

全国/all/不限/p1
https://www.guahao.com/expert/all/全国/all/不限/p2
...
https://www.guahao.com/expert/all/全国/all/不限/p38

数据总过38页,量不是很大,咱只需要随便选择一个库抓取就行,这篇博客,我找了一个冷门的库
pyppeteer 在使用过程中,发现资料好少,很尴尬。而且官方的文档写的也不好,有兴趣的可以自行去看看。关于这个库的安装也在下面的网址中。

最简单的使用方法,在官方文档中也简单的写了一下,如下,可以把一个网页直接保存为一张图片。

import asyncio
from pyppeteer import launch
async def main():
  browser = await launch() # 运行一个无头的浏览器
  page = await browser.newpage() # 打开一个选项卡
  await page.goto('http://www.baidu.com') # 加载一个页面
  await page.screenshot({'path': 'baidu.png'}) # 把网页生成截图
  await browser.close()
asyncio.get_event_loop().run_until_complete(main()) # 异步

我整理了下面的一些参考代码,你可以 做一些参考。

browser = await launch(headless=false) # 可以打开浏览器
await page.click('#login_user') # 点击一个按钮
await page.type('#login_user', 'admin') # 输入内容
await page.click('#password') 
await page.type('#password', '123456')
await page.click('#login-submit')
await page.waitfornavigation() 
# 设置浏览器窗口大小
await page.setviewport({
  'width': 1350,
  'height': 850
})
content = await page.content() # 获取网页内容
cookies = await page.cookies() # 获取网页cookies

3. 爬取页面

运行下面的代码,你就可以看到控制台不断的打印网页的源码,只要获取到源码,就可以进行后面的解析与保存数据了。如果出现控制不输出任何东西的情况,那么请把下面的

await launch(headless=true) 修改为 await launch(headless=false)

import asyncio
from pyppeteer import launch
class doctorspider(object):
  async def main(self, num):
    try:
      browser = await launch(headless=true)
      page = await browser.newpage()
      print(f"正在爬取第 {num} 页面")
      await page.goto("https://www.guahao.com/expert/all/全国/all/不限/p{}".format(num))
      content = await page.content()
      print(content)
    except exception as e:
      print(e.args)
    finally:
      num += 1
      await browser.close()
      await self.main(num)
  def run(self):
    loop = asyncio.get_event_loop()
    asyncio.get_event_loop().run_until_complete(self.main(1))
if __name__ == '__main__':
  doctor = doctorspider()
  doctor.run()

4. 解析数据

解析数据采用的是pyquery ,这个库在之前的博客中有过使用,直接应用到案例中即可。最终产生的数据通过pandas保存到csv文件中。

import asyncio
from pyppeteer import launch
from pyquery import pyquery as pq
import pandas as pd # 保存csv文件
class doctorspider(object):
  def __init__(self):
    self._data = list()
  async def main(self,num):
    try:
      browser = await launch(headless=true)
      page = await browser.newpage()
      print(f"正在爬取第 {num} 页面")
      await page.goto("https://www.guahao.com/expert/all/全国/all/不限/p{}".format(num))
      content = await page.content()
      self.parse_html(content)
      print("正在存储数据....")
      data = pd.dataframe(self._data)
      data.to_csv("微医数据.csv", encoding='utf_8_sig')
    except exception as e:
      print(e.args)
    finally:
      num+=1
      await browser.close()
      await self.main(num)
  def parse_html(self,content):
    doc = pq(content)
    items = doc(".g-doctor-item").items()
    for item in items:
      #doctor_name = item.find(".seo-anchor-text").text()
      name_level = item.find(".g-doc-baseinfo>dl>dt").text() # 姓名和级别
      department = item.find(".g-doc-baseinfo>dl>dd>p:eq(0)").text() # 科室
      address = item.find(".g-doc-baseinfo>dl>dd>p:eq(1)").text() # 医院地址
      star = item.find(".star-count em").text() # 评分
      inquisition = item.find(".star-count i").text() # 问诊量
      expert_team = item.find(".expert-team").text() # 专家团队
      service_price_img = item.find(".service-name:eq(0)>.fee").text()
      service_price_video = item.find(".service-name:eq(1)>.fee").text()
      one_data = {
        "name": name_level.split(" ")[0],
        "level": name_level.split(" ")[1],
        "department": department,
        "address": address,
        "star": star,
        "inquisition": inquisition,
        "expert_team": expert_team,
        "service_price_img": service_price_img,
        "service_price_video": service_price_video
      }
      self._data.append(one_data)
  def run(self):
    loop = asyncio.get_event_loop()
    asyncio.get_event_loop().run_until_complete(self.main(1))
if __name__ == '__main__':
  doctor = doctorspider()
  doctor.run()

总结一下,这个库不怎么好用,可能之前没有细细的研究过,感觉一般,你可以在多尝试一下,看一下是否可以把整体的效率提高上去。

数据清单:

Python微医挂号网医生数据抓取

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接