欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PCL 平面分割

程序员文章站 2022-03-16 18:05:04
...
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/extract_indices.h>
int
main (int argc, char** argv)
{
   pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);
   pcl::PointCloud<pcl::PointXYZI>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZI>),cloud_p (new pcl::PointCloud<pcl::PointXYZI>), cloud_f (new pcl::PointCloud<pcl::PointXYZI>);
   // 填入点云数据
   pcl::io::loadPCDFile("table_scene_lms400.pcd", *cloud);

   // 创建滤波器对象
   pcl::VoxelGrid<pcl::PointXYZI> sor;//滤波处理对象
   sor.setInputCloud(cloud);
   sor.setLeafSize(0.01f, 0.01f, 0.01f);//设置滤波器处理时采用的体素大小的参数
   sor.filter(*cloud_filtered);
  std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;
  // 将下采样后的数据存入磁盘
  pcl::PCDWriter writer;
  writer.write<pcl::PointXYZI> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);
  pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
  pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
  // 创建分割对象
  pcl::SACSegmentation<pcl::PointXYZI> seg;
  // 可选
  seg.setOptimizeCoefficients (true);
  // 必选
  seg.setModelType (pcl::SACMODEL_PLANE);
  seg.setMethodType (pcl::SAC_RANSAC);
  seg.setMaxIterations (1000);
  seg.setDistanceThreshold (0.01);
  // 创建滤波器对象
  pcl::ExtractIndices<pcl::PointXYZI> extract;
  int i = 0, nr_points = (int) cloud_filtered->points.size ();
  // 当还有30%原始点云数据时
  while (cloud_filtered->points.size () > 0.3 * nr_points)
  {
    // 从余下的点云中分割最大平面组成部分
    seg.setInputCloud (cloud_filtered);
    seg.segment (*inliers, *coefficients);
    if (inliers->indices.size () == 0)
    {
      std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
      break;
    }
    // 分离内层
    extract.setInputCloud (cloud_filtered);
    extract.setIndices (inliers);
    extract.setNegative (false);
    extract.filter (*cloud_p);
    std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;
    std::stringstream ss;
    ss << "table_scene_lms400_plane_" << i << ".pcd";
    writer.write<pcl::PointXYZI> (ss.str (), *cloud_p, false);
    // 创建滤波器对象
    extract.setNegative (true);
    extract.filter (*cloud_f);
    cloud_filtered.swap (cloud_f);
    i++;
  }
  return (0);
}

相关标签: 视觉