欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python时间序列处理之ARIMA模型的使用讲解

程序员文章站 2023-11-07 10:31:40
arima模型 arima模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作arima(p,d,q)。 arima的适应情况 arima...

arima模型

arima模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作arima(p,d,q)。

arima的适应情况

arima模型相对来说比较简单易用。在应用arima模型时,要保证以下几点:

  • 时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定。
  • 非线性关系处理不好,只能处理线性关系

判断时序数据稳定

基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值。

arima数学表达

arima(p,d,q),其中p是数据本身的滞后数,是ar模型即自回归模型中的参数。d是时间序列数据需要几次差分才能得到稳定的数据。q是预测误差的滞后数,是ma模型即滑动平均模型中的参数。

a) p参数与ar模型

ar模型描述的是当前值与历史值之间的关系,滞后p阶的ar模型可以表示为:

Python时间序列处理之ARIMA模型的使用讲解

其中u是常数,et代表误差。

b) q参数与ma模型

ma模型描述的是当前值与自回归部分的误差累计的关系,滞后q阶的ma模型可以表示为:

Python时间序列处理之ARIMA模型的使用讲解

其中u是常数,et代表误差。

c) d参数与差分

一阶差分:

Python时间序列处理之ARIMA模型的使用讲解

二阶差分:

Python时间序列处理之ARIMA模型的使用讲解

d) arima = ar+ma

Python时间序列处理之ARIMA模型的使用讲解

arima模型使用步骤

  • 获取时间序列数据
  • 观测数据是否为平稳的,否则进行差分,化为平稳的时序数据,确定d
  • 通过观察自相关系数acf与偏自相关系数pacf确定q和p

Python时间序列处理之ARIMA模型的使用讲解

  • 得到p,d,q后使用arima(p,d,q)进行训练预测

python调用arima

#差分处理
diff_series = diff_series.diff(1)#一阶
diff_series2 = diff_series.diff(1)#二阶
#acf与pacf
#从scipy导入包
from scipy import stats
import statsmodels.api as sm
#画出acf和pacf
sm.graphics.tsa.plot_acf(diff_series)
sm.graphics.tsa.plot_pacf(diff_series)
#arima模型
from statsmodels.tsa.arima_model import arima
model = arima(train_data,order=(p,d,q),freq='')#freq是频率,根据数据填写
arima = model.fit()#训练
print(arima)
pred = arima.predict(start='',end='')#预测

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接