欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python读取图片任意范围区域

程序员文章站 2023-11-05 20:24:46
使用python进行图片处理,现在需要读出图片的任意一块区域,并将其转化为一维数组,方便后续卷积操作的使用。 下面使用两种方法进行处理: convert 函数...

使用python进行图片处理,现在需要读出图片的任意一块区域,并将其转化为一维数组,方便后续卷积操作的使用。
下面使用两种方法进行处理:

convert 函数

from pil import image
import numpy as np
import matplotlib.pyplot as plt

def imagetomatrix(filename):
 im = image.open(filename)  # 读取图片
 im.show()      # 显示图片
 width,height = im.size
 print("width is :" + str(width))
 print("height is :" + str(height))
 im = im.convert("l")    # pic --> mat 转换,可以选择不同的模式,下面有函数源码具体说明
 data = im.getdata()
 data = np.matrix(data,dtype='float')/255.0
 new_data = np.reshape(data * 255.0,(height,width))
 new_im = image.fromarray(new_data)
 # 显示从矩阵数据得到的图片
 new_im.show()
 return new_data

def matrixtoimage(data):
 data = data*255
 new_im = image.fromarray(data.astype(np.uint8))
 return new_im

'''
 convert(self, mode=none, matrix=none, dither=none, palette=0, colors=256)
  |  returns a converted copy of this image. for the "p" mode, this
  |  method translates pixels through the palette. if mode is
  |  omitted, a mode is chosen so that all information in the image
  |  and the palette can be represented without a palette.
  |  
  |  the current version supports all possible conversions between
  |  "l", "rgb" and "cmyk." the **matrix** argument only supports "l"
  |  and "rgb".
  |  
  |  when translating a color image to black and white (mode "l"),
  |  the library uses the itu-r 601-2 luma transform::
  |  
  |   l = r * 299/1000 + g * 587/1000 + b * 114/1000
  |  
  |  the default method of converting a greyscale ("l") or "rgb"
  |  image into a bilevel (mode "1") image uses floyd-steinberg
  |  dither to approximate the original image luminosity levels. if
  |  dither is none, all non-zero values are set to 255 (white). to
  |  use other thresholds, use the :py:meth:`~pil.image.image.point`
  |  method.
  |  
  |  :param mode: the requested mode. see: :ref:`concept-modes`.
  |  :param matrix: an optional conversion matrix. if given, this
  |   should be 4- or 12-tuple containing floating point values.
  |  :param dither: dithering method, used when converting from
  |   mode "rgb" to "p" or from "rgb" or "l" to "1".
  |   available methods are none or floydsteinberg (default).
  |  :param palette: palette to use when converting from mode "rgb"
  |   to "p". available palettes are web or adaptive.
  |  :param colors: number of colors to use for the adaptive palette.
  |   defaults to 256.
  |  :rtype: :py:class:`~pil.image.image`
  |  :returns: an :py:class:`~pil.image.image` object.

'''

原图:

python读取图片任意范围区域

filepath = "./imgs/"

imgdata = imagetomatrix("./imgs/0001.jpg")
print(type(imgdata))
print(imgdata.shape)

plt.imshow(imgdata) # 显示图片
plt.axis('off')  # 不显示坐标轴
plt.show()

运行结果:

python读取图片任意范围区域

mpimg 函数

import matplotlib.pyplot as plt  # plt 用于显示图片
import matplotlib.image as mpimg  # mpimg 用于读取图片
import numpy as np

def readpic(picname, filename):
 img = mpimg.imread(picname)
 # 此时 img 就已经是一个 np.array 了,可以对它进行任意处理
 weight,height,n = img.shape  #(512, 512, 3)
 print("the original pic: \n" + str(img))

 plt.imshow(img)     # 显示图片
 plt.axis('off')     # 不显示坐标轴
 plt.show()

 # 取reshape后的矩阵的第一维度数据,即所需要的数据列表
  img_reshape = img.reshape(1,weight*height*n)[0]
  print("the 1-d image data :\n "+str(img_reshape))

 # 截取(300,300)区域的一小块(12*12*3),将该区域的图像数据转换为一维数组
 img_cov = np.random.randint(1,2,(12,12,3))  # 这里使用np.ones()初始化数组,会出现数组元素为float类型,使用np.random.randint确保其为int型
 for j in range(12):
  for i in range(12):
   img_cov[i][j] = img[300+i][300+j]

 img_reshape = img_cov.reshape(1,12*12*3)[0]
 print((img_cov))
 print(img_reshape)

 # 打印该12*12*3区域的图像
 plt.imshow(img_cov) 
 plt.axis('off') 
 plt.show()

 # 写文件
 # open:以append方式打开文件,如果没找到对应的文件,则创建该名称的文件
 with open(filename, 'a') as f:
  f.write(str(img_reshape))
 return img_reshape

if __name__ == '__main__':
 picname = './imgs/0001.jpg'
 readpic(picname, "data.py")

读出的数据(12*12*3),每个像素点以r、g、b的顺序排列,以及该区域显示为图片的效果:

python读取图片任意范围区域

参考:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。