欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

详解Numpy中的广播原则/机制

程序员文章站 2023-11-02 14:12:46
广播的原则 如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。...

广播的原则

如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。

在上面的对arr每一列减去列平均值的例子中,arr的后缘维度为3,arr.mean(0)后缘维度也是3,满足轴长度相符的条件,广播会在缺失维度进行。

这里有点奇怪的是缺失维度不是axis=1,而是axis=0,个人理解是缺失维度指的是两个arr除了轴长度匹配的维度,在上面的例子中,正好是axis=0。这块欢迎指正

arr.mean(0)沿着axis=0广播,可以看作是把arr.mean(0)沿着竖直方向复制4份,即广播的时候arr.mean(0)相当于一个shape=(4,3)的数组,数组的每一行均相同,均为arr.mean(0)

为了了解这个原则,首先我们来看一组例子:

# 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数。
in [12]: import numpy as np
in [13]: a = np.arange(1,13).reshape((4, 3))
in [14]: a * 2
out[14]: array([[ 2, 4, 6],
    [ 8, 10, 12],
    [14, 16, 18],
    [20, 22, 24]])
# 接下来我们看一下数组与数组之间的计算
in [17]: b = np.arange(12,24).reshape((4,3))
in [18]: b
out[18]: array([[12, 13, 14],
    [15, 16, 17],
    [18, 19, 20],
    [21, 22, 23]])
in [19]: a + b
out[19]: array([[13, 15, 17],
    [19, 21, 23],
    [25, 27, 29],
    [31, 33, 35]])
in [20]: c = np.array([1,2,3])
in [21]: a+c
out[21]: array([[ 2, 4, 6],
    [ 5, 7, 9],
    [ 8, 10, 12],
    [11, 13, 15]])
in [22]: d = np.arange(10,14).reshape((4,1))
in [23]: d
out[23]: array([[10],
    [11],
    [12],
    [13]])
in [24]: a + d
out[24]: array([[11, 12, 13],
    [15, 16, 17],
    [19, 20, 21],
    [23, 24, 25]])
# 从上面可以看出,和线性代数中不同的是,m*n列的m行的一维数组或者n列的一维数组也是可以计算的。

这是为什么呢?这里要提到numpy的广播原则:

如果两个数组的后缘维度(从末尾开始算起的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼容的。广播会在缺失维度和(或)轴长度为1的维度上进行。

在上面的代码中,a的维度是(4,3),c的维度是(1,3);d的维度是(4,1)。所以假设有两个数组,第一个的维度是(x_1, y_1, z_1),另一个数组的维度是(x_2, y_2, z_2),要判断这两个数组能不能进行计算,可以用如下方法来判断:

if z_1 == z_2 or z_1 == 1 or z_2 == 1:
 if y_1 == y_2 or y_1 == 1 or y_2 == 1:
  if x_1 == x_2 or x_1 == 1 or x_2 == 1:
   可以运算
  else:
   不可以运算
 else:
  不可以运算
else:
 不可以运算

这里需要注意:(3,3,2)和(3,2)是可以运算的,因为对于二维数组(3,2)也可以表示为(1,3,2),套用上述的规则是完全适用的,同理:(4,2,5,4)和(2,1,4)也是可以进行运算的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。