HashMap 中的容量与扩容实现,细致入微,值的一品!
前言
开心一刻
巴闭,你的脚怎么会有味道,我要闻闻看是不是好吃的,嗯~~爸比你的脚臭死啦!! ……
高手过招,招招致命
jdk1.8 中 hashmap 的底层实现,我相信大家都能说上来个 一二,底层数据结构 数组 + 链表(或红黑树) ,源码如下
/** * 数组 */ transient node<k,v>[] table; /** * 链表结构 */ static class node<k,v> implements map.entry<k,v> { final int hash; final k key; v value; node<k,v> next; node(int hash, k key, v value, node<k,v> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final k getkey() { return key; } public final v getvalue() { return value; } public final string tostring() { return key + "=" + value; } public final int hashcode() { return objects.hashcode(key) ^ objects.hashcode(value); } public final v setvalue(v newvalue) { v oldvalue = value; value = newvalue; return oldvalue; } public final boolean equals(object o) { if (o == this) return true; if (o instanceof map.entry) { map.entry<?,?> e = (map.entry<?,?>)o; if (objects.equals(key, e.getkey()) && objects.equals(value, e.getvalue())) return true; } return false; } } /** * 红黑树结构 */ static final class treenode<k,v> extends linkedhashmap.entry<k,v> { treenode<k,v> parent; // red-black tree links treenode<k,v> left; treenode<k,v> right; treenode<k,v> prev; // needed to unlink next upon deletion boolean red; ...
但面试往往会问的比较细,例如下面的容量问题,我们能答上来几个?
1、table 的初始化时机是什么时候,初始化的 table.length 是多少、阀值(threshold)是多少,实际能容下多少元素
2、什么时候触发扩容,扩容之后的 table.length、阀值各是多少?
3、table 的 length 为什么是 2 的 n 次幂
4、求索引的时候为什么是:h&(length-1),而不是 h&length,更不是 h%length
5、 map map = new hashmap(1000); 当我们存入多少个元素时会触发map的扩容; map map1 = new hashmap(10000); 我们存入第 10001个元素时会触发 map1 扩容吗
6、为什么加载因子的默认值是 0.75,并且不推荐我们修改
由于我们平时关注的少,一旦碰上这样的 连击 + 暴击,我们往往不知所措、无从应对;接下来我们看看上面的 6 个问题,是不是真的难到无法理解 ,还是我们不够细心、在自信的自我认为
斗智斗勇,见招拆招
上述的问题,我们如何去找答案 ? 方式有很多种,用的最多的,我想应该是上网查资料、看别人的博客,但我认为最有效、准确的方式是读源码
问题 1:table 的初始化
hashmap 的构造方法有如下 4 种
/** * 构造方法 1 * * 通过 指定的 initialcapacity 和 loadfactor 实例化一个空的 hashmap 对象 */ public hashmap(int initialcapacity, float loadfactor) { if (initialcapacity < 0) throw new illegalargumentexception("illegal initial capacity: " + initialcapacity); if (initialcapacity > maximum_capacity) initialcapacity = maximum_capacity; if (loadfactor <= 0 || float.isnan(loadfactor)) throw new illegalargumentexception("illegal load factor: " + loadfactor); this.loadfactor = loadfactor; this.threshold = tablesizefor(initialcapacity); } /** * 构造方法 2 * * 通过指定的 initialcapacity 和 默认的 loadfactor(0.75) 实例化一个空的 hashmap 对象 */ public hashmap(int initialcapacity) { this(initialcapacity, default_load_factor); } /** * 构造方法 3 * * 通过默认的 initialcapacity 和 默认的 loadfactor(0.75) 实例化一个空的 hashmap 对象 */ public hashmap() { this.loadfactor = default_load_factor; // all other fields defaulted } /** * * 构造方法 4 * 通过指定的 map 对象实例化一个 hashmap 对象 */ public hashmap(map<? extends k, ? extends v> m) { this.loadfactor = default_load_factor; putmapentries(m, false); }
构造方式 4 和 构造方式 1 实际应用的不多,构造方式 2 直接调用的 1(底层实现完全一致),构造方式 2 和 构造方式 3 比较常用,而最常用的是构造方式 3;此时我们以构造方式 3 为前提来分析,而构造方式 2 我们则在问题 5 中来分析
使用方式 1 实例化 hashmap 的时候,table 并未进行初始化,那 table 是何时进行初始化的了 ? 平时我们是如何使用 hashmap 的,先实例化、然后 put、然后进行其他操作,如下
map<string,object> map = new hashmap(); map.put("name", "张三"); map.put("age", 21); // 后续操作 ...
既然实例化的时候未进行 table 的初始化,那是不是在 put 的时候初始化的了,我们来确认下
resize() 初始化 table 或 对 table 进行双倍扩容,源码如下(注意看注释)
/** * initializes or doubles table size. if null, allocates in * accord with initial capacity target held in field threshold. * otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final node<k,v>[] resize() { node<k,v>[] oldtab = table; // 第一次 put 的时候,table = null int oldcap = (oldtab == null) ? 0 : oldtab.length; // oldcap = 0 int oldthr = threshold; // threshold=0, oldthr = 0 int newcap, newthr = 0; if (oldcap > 0) { // 条件不满足,往下走 if (oldcap >= maximum_capacity) { threshold = integer.max_value; return oldtab; } else if ((newcap = oldcap << 1) < maximum_capacity && oldcap >= default_initial_capacity) newthr = oldthr << 1; // double threshold } else if (oldthr > 0) // initial capacity was placed in threshold newcap = oldthr; else { // zero initial threshold signifies using defaults 走到这里,进行默认初始化 newcap = default_initial_capacity; // default_initial_capacity = 1 << 4 = 16, newcap = 16; newthr = (int)(default_load_factor * default_initial_capacity); // newthr = 0.75 * 16 = 12; } if (newthr == 0) { // 条件不满足 float ft = (float)newcap * loadfactor; newthr = (newcap < maximum_capacity && ft < (float)maximum_capacity ? (int)ft : integer.max_value); } threshold = newthr; // threshold = 12; 重置阀值为12 @suppresswarnings({"rawtypes","unchecked"}) node<k,v>[] newtab = (node<k,v>[])new node[newcap]; // 初始化 newtab, length = 16; table = newtab; // table 初始化完成, length = 16; if (oldtab != null) { // 此时条件不满足,后续扩容的时候,走此if分支 将数组元素复制到新数组 for (int j = 0; j < oldcap; ++j) { node<k,v> e; if ((e = oldtab[j]) != null) { oldtab[j] = null; if (e.next == null) newtab[e.hash & (newcap - 1)] = e; else if (e instanceof treenode) ((treenode<k,v>)e).split(this, newtab, j, oldcap); else { // preserve order node<k,v> lohead = null, lotail = null; node<k,v> hihead = null, hitail = null; node<k,v> next; do { next = e.next; if ((e.hash & oldcap) == 0) { if (lotail == null) lohead = e; else lotail.next = e; lotail = e; } else { if (hitail == null) hihead = e; else hitail.next = e; hitail = e; } } while ((e = next) != null); if (lotail != null) { lotail.next = null; newtab[j] = lohead; } if (hitail != null) { hitail.next = null; newtab[j + oldcap] = hihead; } } } } } return newtab; // 新数组 }
自此,问题 1 的答案就明了了
table 的初始化时机是什么时候 一般情况下,在第一次 put 的时候,调用 resize 方法进行 table 的初始化 初始化的 table.length 是多少、阀值(threshold)是多少,实际能容下多少元素 默认情况下,table.length = 16; 指定了 initialcapacity 的情况放到问题 5 中分析 默认情况下,threshold = 12; 指定了 initialcapacity 的情况放到问题 5 中分析 默认情况下,能存放 12 个元素,当存放第 13 个元素后进行扩容
问题 2 :table 的扩容
putval 源码如下
/** * implements map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyifabsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final v putval(int hash, k key, v value, boolean onlyifabsent, boolean evict) { node<k,v>[] tab; node<k,v> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newnode(hash, key, value, null); else { node<k,v> e; k k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof treenode) e = ((treenode<k,v>)p).puttreeval(this, tab, hash, key, value); else { for (int bincount = 0; ; ++bincount) { if ((e = p.next) == null) { p.next = newnode(hash, key, value, null); if (bincount >= treeify_threshold - 1) // -1 for 1st treeifybin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key v oldvalue = e.value; if (!onlyifabsent || oldvalue == null) e.value = value; afternodeaccess(e); return oldvalue; } } ++modcount; if (++size > threshold) // 当size(已存放元素个数) > thrshold(阀值),进行扩容 resize(); afternodeinsertion(evict); return null; }
还是调用 resize() 进行扩容,但与初始化时不同(注意看注释)
/** * initializes or doubles table size. if null, allocates in * accord with initial capacity target held in field threshold. * otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final node<k,v>[] resize() { node<k,v>[] oldtab = table; // 此时的 table != null,oldtab 指向旧的 table int oldcap = (oldtab == null) ? 0 : oldtab.length; // oldcap = table.length; 第一次扩容时是 16 int oldthr = threshold; // threshold=12, oldthr = 12; int newcap, newthr = 0; if (oldcap > 0) { // 条件满足,走此分支 if (oldcap >= maximum_capacity) { threshold = integer.max_value; return oldtab; } else if ((newcap = oldcap << 1) < maximum_capacity && // oldcap左移一位; newcap = 16 << 1 = 32; oldcap >= default_initial_capacity) newthr = oldthr << 1; // double threshold // newthr = 12 << 1 = 24; } else if (oldthr > 0) // initial capacity was placed in threshold newcap = oldthr; else { // zero initial threshold signifies using defaults newcap = default_initial_capacity; // default_initial_capacity = 1 << 4 = 16, newcap = 16; newthr = (int)(default_load_factor * default_initial_capacity); } if (newthr == 0) { // 条件不满足 float ft = (float)newcap * loadfactor; newthr = (newcap < maximum_capacity && ft < (float)maximum_capacity ? (int)ft : integer.max_value); } threshold = newthr; // threshold = newthr = 24; 重置阀值为 24 @suppresswarnings({"rawtypes","unchecked"}) node<k,v>[] newtab = (node<k,v>[])new node[newcap]; // 初始化 newtab, length = 32; table = newtab; // table 指向 newtab, length = 32; if (oldtab != null) { // 扩容后,将 oldtab(旧table) 中的元素移到 newtab(新table)中 for (int j = 0; j < oldcap; ++j) { node<k,v> e; if ((e = oldtab[j]) != null) { oldtab[j] = null; if (e.next == null) newtab[e.hash & (newcap - 1)] = e; // else if (e instanceof treenode) ((treenode<k,v>)e).split(this, newtab, j, oldcap); else { // preserve order node<k,v> lohead = null, lotail = null; node<k,v> hihead = null, hitail = null; node<k,v> next; do { next = e.next; if ((e.hash & oldcap) == 0) { if (lotail == null) lohead = e; else lotail.next = e; lotail = e; } else { if (hitail == null) hihead = e; else hitail.next = e; hitail = e; } } while ((e = next) != null); if (lotail != null) { lotail.next = null; newtab[j] = lohead; } if (hitail != null) { hitail.next = null; newtab[j + oldcap] = hihead; } } } } } return newtab; }
自此,问题 2 的答案也就清晰了
什么时候触发扩容,扩容之后的 table.length、阀值各是多少 当 size > threshold 的时候进行扩容 扩容之后的 table.length = 旧 table.length * 2, 扩容之后的 threshold = 旧 threshold * 2
问题 3、4 :2 的 n 次幂
table 是一个数组,那么如何最快的将元素 e 放入数组 ? 当然是找到元素 e 在 table 中对应的位置 index ,然后 table[index] = e; 就好了;如何找到 e 在 table 中的位置了 ? 我们知道只能通过数组下标(索引)操作数组,而数组的下标类型又是 int ,如果 e 是 int 类型,那好说,就直接用 e 来做数组下标(若 e > table.length,则可以 e % table.length 来获取下标),可 key - value 中的 key 类型不一定,所以我们需要一种统一的方式将 key 转换成 int ,最好是一个 key 对应一个唯一的 int (目前还不可能, int有范围限制,对转换方法要求也极高),所以引入了 hash 方法
static final int hash(object key) { int h; return (key == null) ? 0 : (h = key.hashcode()) ^ (h >>> 16); // 这里的处理,有兴趣的可以琢磨下;能够减少碰撞 }
实现 key 到 int 的转换(关于 hash,本文不展开讨论)。拿到了 key 对应的 int h 之后,我们最容易想到的对 value 的 put 和 get 操作也许如下
// put table[h % table.length] = value; // get e = table[h % table.length];
直接取模是我们最容易想到的获取下标的方法,但是最高效的方法吗 ?
我们知道计算机中的四则运算最终都会转换成二进制的位运算
我们可以发现,只有 & 数是1时,& 运算的结果与被 & 数一致
1&1=1; 0&1=0; 1&0=0; 0&0=0;
这同样适用于多位操作数
1010&1111=1010; => 10&15=10; 1011&1111=1011; => 11&15=11; 01010&10000=00000; => 10&16=0; 01011&10000=00000; => 11&16=0;
我们是不是又有所发现: 10 & 16 与 11 & 16 得到的结果一样,也就是冲突(碰撞)了,那么 10 和 11 对应的 value 会在同一个链表中,而 table 的有些位置则永远不会有元素,这就导致 table 的空间未得到充分利用,同时还降低了 put 和 get 的效率(对比数组和链表);由于是 2 个数进行 & 运算,所以结果由这两个数决定,如果我们把这两个数都做下限制,那得到的结果是不是可控制在我们想要的范围内了 ? 我们需要利用好 & 运算的特点,当右边的数的低位二进制是连续的 1 ,且左边是一个均匀的数(需要 hash 方法实现,尽量保证 key 的 h 唯一),那么得到的结果就比较完美了。低位二进制连续的 1,我们很容易想到 2^n - 1; 而关于左边均匀的数,则通过 hash 方法来实现,这里不做细究了。
自此,2 的 n 次幂的相关问题就清楚了
table 的 length 为什么是 2 的 n 次幂 为了利用位运算 & 求 key 的下标 求索引的时候为什么是:h&(length-1),而不是 h&length,更不是 h%length h%length 效率不如位运算快 h&length 会导致 table 的空间得不到利用、降低 table 的操作效率
给各位留个疑问:为什么不直接用 2^n-1 作为 table.length ? 欢迎评论区留言
问题 5:指定 initialcapacity
当我们指定了 initialcapacity,hashmap的构造方法有些许不同,如下所示
调用 tablesizefor 进行 threshold 的初始化
/** * returns a power of two size for the given target capacity. * 返回 >= cap 最小的 2^n * cap = 10, 则返回 2^4 = 16; * cap = 5, 则返回 2^3 = 8; */ static final int tablesizefor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= maximum_capacity) ? maximum_capacity : n + 1; }
虽然此处初始化的是 threshold,但后面初始化 table 的时候,会将其用于 table 的 length,同时会重置 threshold 为 table.length * loadfactor
自此,问题 5 也就清楚了
map map = new hashmap(1000); 当我们存入多少个元素时会触发map的扩容 此时的 table.length = 2^10 = 1024; threshold = 1024 * 0.75 = 768; 所以存入第 769 个元素时进行扩容 map map1 = new hashmap(10000); 我们存入第 10001个元素时会触发 map1 扩容吗 此时的 table.length = 2^14 = 16384; threshold = 16384 * 0.75 = 12288; 所以存入第 10001 个元素时不会进行扩容
问题6:加载因子
为什么加载因子的默认值是 0.75,并且不推荐我们修改 如果loadfactor太小,那么map中的table需要不断的扩容,扩容是个耗时的过程 如果loadfactor太大,那么map中table放满了也不不会扩容,导致冲突越来越多,解决冲突而起的链表越来越长,效率越来越低 而 0.75 这是一个折中的值,是一个比较理想的值
总结
1、table.length = 2^n,是为了能利用位运算(&)来求 key 的下标,而 h&(length-1) 是为了充分利用 table 的空间,并减少 key 的碰撞
2、加载因子太小, table 需要不断的扩容,影响 put 效率;太大会导致碰撞越来越多,链表越来越长(转红黑树),影响效率;0.75 是一个比较理想的中间值
3、table.length = 2^n、hash 方法获取 key 的 h、加载因子 0.75、数组 + 链表(或红黑树),一环扣一环,保证了 key 在 table 中的均匀分配,充分利用了空间,也保证了操作效率
环环相扣的,而不是心血来潮的随意处理;缺了一环,其他的环就无意义了!
4、网上有个 put 方法的流程图画的挺好,我就偷懒了
参考
java提高篇(二三)-----hashmap
【原创】hashmap复习精讲
面试官:"准备用hashmap存1w条数据,构造时传10000还会触发扩容吗?"
上一篇: linux安装RocketMQ实例步骤
下一篇: 宝宝出汗的原因有哪些?怎么止汗