欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python计算最小优先级队列代码分享

程序员文章站 2023-10-28 12:11:34
复制代码 代码如下:# -*- coding: utf-8 -*- class heap(object):     @classmetho...

复制代码 代码如下:

# -*- coding: utf-8 -*-

class heap(object):

    @classmethod
    def parent(cls, i):
        """父结点下标"""
        return int((i - 1) >> 1);

    @classmethod
    def left(cls, i):
        """左儿子下标"""
        return (i << 1) + 1;

    @classmethod
    def right(cls, i):
        """右儿子下标"""
        return (i << 1) + 2;

class minpriorityqueue(list, heap):

    @classmethod
    def min_heapify(cls, a, i, heap_size):
        """最小堆化a[i]为根的子树"""
        l, r = cls.left(i), cls.right(i)
        if l < heap_size and a[l] < a[i]:
            least = l
        else:
            least = i
        if r < heap_size and a[r] < a[least]:
            least = r
        if least != i:
            a[i], a[least] = a[least], a[i]
            cls.min_heapify(a, least, heap_size)

    def minimum(self):
        """返回最小元素,伪码如下:
        heap-minimum(a)
        1  return a[1]

        t(n) = o(1)
        """
        return self[0]

    def extract_min(self):
        """去除并返回最小元素,伪码如下:
        heap-extract-min(a)
        1  if heap-size[a] < 1
        2    then error "heap underflow"
        3  min ← a[1]
        4  a[1] ← a[heap-size[a]] // 尾元素放到第一位
        5  heap-size[a] ← heap-size[a] - 1 // 减小heap-size[a]
        6  min-heapify(a, 1) // 保持最小堆性质
        7  return min

        t(n) = θ(lgn)
        """
        heap_size = len(self)
        assert heap_size > 0, "heap underflow"
        val = self[0]
        tail = heap_size - 1
        self[0] = self[tail]
        self.min_heapify(self, 0, tail)
        self.pop(tail)
        return val

    def decrease_key(self, i, key):
        """将i处的值减少到key,伪码如下:
        heap-decrease-key(a, i, key)
        1  if key > a[i]
        2    then error "new key is larger than current key"
        3  a[i] ← key
        4  while i > 1 and a[parent(i)] > a[i] // 不是根结点且父结点更大时
        5    do exchange a[i] ↔ a[parent(i)] // 交换两元素
        6       i ← parent(i) // 指向父结点位置

        t(n) = θ(lgn)
        """
        val = self[i]
        assert key <= val, "new key is larger than current key"
        self[i] = key
        parent = self.parent
        while i > 0 and self[parent(i)] > self[i]:
            self[i], self[parent(i)] = self[parent(i)], self[i]
            i = parent(i)

    def insert(self, key):
        """将key插入a,伪码如下:
        min-heap-insert(a, key)
        1  heap-size[a] ← heap-size[a] + 1 // 对元素个数增加
        2  a[heap-size[a]] ← +∞ // 初始新增加元素为+∞
        3  heap-decrease-key(a, heap-size[a], key) // 将新增元素减少到key

        t(n) = θ(lgn)
        """
        self.append(float('inf'))
        self.decrease_key(len(self) - 1, key)

if __name__ == '__main__':
    import random

    keys = range(10)
    random.shuffle(keys)
    print(keys)

    queue = minpriorityqueue() # 插入方式建最小堆
    for i in keys:
        queue.insert(i)
    print(queue)

    print('*' * 30)

    for i in range(len(queue)):
        val = i % 3
        if val == 0:
            val = queue.extract_min() # 去除并返回最小元素
        elif val == 1:
            val = queue.minimum() # 返回最小元素
        else:
            val = queue[1] - 10
            queue.decrease_key(1, val) # queue[1]减少10
        print(queue, val)

    print([queue.extract_min() for i in range(len(queue))])