python实现三次样条插值
程序员文章站
2023-10-28 09:17:28
本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下
函数:
算法分析
三次样条插值。就是在分段插值的一种情况。
要求:...
本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下
函数:
算法分析
三次样条插值。就是在分段插值的一种情况。
要求:
- 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源)
- 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续)
- 加上边界条件。边界条件只需要给出两个方程。构建一个方程组,就可以解出所有的参数。
这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)
但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。
情况一:两边导数数值给出
这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。
情况一图像
情况一代码
import numpy as np from sympy import * import matplotlib.pyplot as plt def f(x): return 1 / (1 + x ** 2) def cal(begin, end, i): by = f(begin) ey = f(end) i = ms[i] * ((end - n) ** 3) / 6 + ms[i + 1] * ((n - begin) ** 3) / 6 + (by - ms[i] / 6) * (end - n) + ( ey - ms[i + 1] / 6) * (n - begin) return i def ff(x): # f[x0, x1, ..., xk] ans = 0 for i in range(len(x)): temp = 1 for j in range(len(x)): if i != j: temp *= (x[i] - x[j]) ans += f(x[i]) / temp return ans def calm(): lam = [1] + [1 / 2] * 9 miu = [1 / 2] * 9 + [1] # y = 1 / (1 + n ** 2) # df = diff(y, n) x = np.array(range(11)) - 5 # ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))] ds = [6 * (ff(x[0:2]) - 1)] for i in range(9): ds.append(6 * ff(x[i: i + 3])) # ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:]))) ds.append(6 * (1 - ff(x[-2:]))) mat = np.eye(11, 11) * 2 for i in range(11): if i == 0: mat[i][1] = lam[i] elif i == 10: mat[i][9] = miu[i - 1] else: mat[i][i - 1] = miu[i - 1] mat[i][i + 1] = lam[i] ds = np.mat(ds) mat = np.mat(mat) ms = ds * mat.i return ms.tolist()[0] def calnf(x): nf = [] for i in range(len(x) - 1): nf.append(cal(x[i], x[i + 1], i)) return nf def calf(f, x): y = [] for i in x: y.append(f.subs(n, i)) return y def nfsub(x, nf): tempx = np.array(range(11)) - 5 dx = [] for i in range(10): labelx = [] for j in range(len(x)): if x[j] >= tempx[i] and x[j] < tempx[i + 1]: labelx.append(x[j]) elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]: labelx.append(x[j]) dx = dx + calf(nf[i], labelx) return np.array(dx) def draw(nf): plt.rcparams['font.sans-serif'] = ['simhei'] plt.rcparams['axes.unicode_minus'] = false x = np.linspace(-5, 5, 101) y = f(x) ly = nfsub(x, nf) plt.plot(x, y, label='原函数') plt.plot(x, ly, label='三次样条插值函数') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.savefig('1.png') plt.show() def losscal(nf): x = np.linspace(-5, 5, 101) y = f(x) ly = nfsub(x, nf) ly = np.array(ly) temp = ly - y temp = abs(temp) print(temp.mean()) if __name__ == '__main__': x = np.array(range(11)) - 5 y = f(x) n, m = symbols('n m') init_printing(use_unicode=true) ms = calm() nf = calnf(x) draw(nf) losscal(nf)
情况二:两边导数数值由函数本身算出
这里假设数值均为1。即 f′(xi)=s′(xi)(i=0,n)f′(xi)=s′(xi)(i=0,n)的情况。
情况二图像
情况二代码
import numpy as np from sympy import * import matplotlib.pyplot as plt def f(x): return 1 / (1 + x ** 2) def cal(begin, end, i): by = f(begin) ey = f(end) i = ms[i] * ((end - n) ** 3) / 6 + ms[i + 1] * ((n - begin) ** 3) / 6 + (by - ms[i] / 6) * (end - n) + ( ey - ms[i + 1] / 6) * (n - begin) return i def ff(x): # f[x0, x1, ..., xk] ans = 0 for i in range(len(x)): temp = 1 for j in range(len(x)): if i != j: temp *= (x[i] - x[j]) ans += f(x[i]) / temp return ans def calm(): lam = [1] + [1 / 2] * 9 miu = [1 / 2] * 9 + [1] y = 1 / (1 + n ** 2) df = diff(y, n) x = np.array(range(11)) - 5 ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))] # ds = [6 * (ff(x[0:2]) - 1)] for i in range(9): ds.append(6 * ff(x[i: i + 3])) ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:]))) # ds.append(6 * (1 - ff(x[-2:]))) mat = np.eye(11, 11) * 2 for i in range(11): if i == 0: mat[i][1] = lam[i] elif i == 10: mat[i][9] = miu[i - 1] else: mat[i][i - 1] = miu[i - 1] mat[i][i + 1] = lam[i] ds = np.mat(ds) mat = np.mat(mat) ms = ds * mat.i return ms.tolist()[0] def calnf(x): nf = [] for i in range(len(x) - 1): nf.append(cal(x[i], x[i + 1], i)) return nf def calf(f, x): y = [] for i in x: y.append(f.subs(n, i)) return y def nfsub(x, nf): tempx = np.array(range(11)) - 5 dx = [] for i in range(10): labelx = [] for j in range(len(x)): if x[j] >= tempx[i] and x[j] < tempx[i + 1]: labelx.append(x[j]) elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]: labelx.append(x[j]) dx = dx + calf(nf[i], labelx) return np.array(dx) def draw(nf): plt.rcparams['font.sans-serif'] = ['simhei'] plt.rcparams['axes.unicode_minus'] = false x = np.linspace(-5, 5, 101) y = f(x) ly = nfsub(x, nf) plt.plot(x, y, label='原函数') plt.plot(x, ly, label='三次样条插值函数') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.savefig('1.png') plt.show() def losscal(nf): x = np.linspace(-5, 5, 101) y = f(x) ly = nfsub(x, nf) ly = np.array(ly) temp = ly - y temp = abs(temp) print(temp.mean()) if __name__ == '__main__': x = np.array(range(11)) - 5 y = f(x) n, m = symbols('n m') init_printing(use_unicode=true) ms = calm() nf = calnf(x) draw(nf) losscal(nf)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: 抢完就走