欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

ZOJ 1095. Humble Numbers

程序员文章站 2023-10-27 08:04:40
如果一个数的所有质数因子都来自于 { 2, 3, 5, 7 } 这个集合,就把这个数字叫做“谦虚数”(Humber Number),现在给出一个数字 i (1 <= i <= 5842),要求输出第 i 个 humber number。 ......

  题目链接:《humble numbers》

  题意:如果一个数的所有质数因子都来自于 { 2, 3, 5, 7 } 这个集合,就把这个数字叫做“谦虚数”(humber number),现在给出一个数字 i (1 <= i <= 5842),要求输出第 i 个 humber number。比如说,前 20 个 humber number 是:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27。

 

  分析:这个题目的描述是非常简单的。从 i 的限定范围最大是 5842 以及范例输出来看,很显然出题人暗示了我们这个题目中涉及到的 humber number 不会超出 int 的范围。因此我们可以放心的使用 int,而不用担心超出表示范围。

  其次可以很容易的想到,需要一个 int 数组,把需要的所有 humber number 放进去作为供查询的表。但是生成这个表会比较耗时,所以很容易超过 2 秒的运行时间限制。所以我们需要更快的建立这个数组,则观察这个序列,因为所有的数字都是如下形式:

  x [ i ] = ( 2 ^ k [0] ) * ( 3 ^ k [1] ) * ( 5 ^ k [2] ) * ( 7 ^ k [3] ) ;

  这里 k 是一个数组,里面的元素表示 2, 3, 5, 7 这四个因子的幂,因此考虑从 x [ i ] 跳到下一个 x [ i + 1] 时,就是数字的这 4 个因子的幂在发生变化。因此只要知道从 x[ i ] 变化到 x[ i + 1] 时,数组 k 如何变化即可。因此我们需要找出前 5842 个 humber number 中的所有规则,这样就可以快速的得到前 5842 个 humber number,组建成我们要查的表。

  观察前面几个数字,很容易发现出这些规则,例如:

  1->2, 2->3, 3->4, 4->5, 5->6, ...

  从 10 到 12 本质上还是应用的 5->6 。因此只有相邻且互质的数字(a, b),才属于我们要找的规则(a -> b),其他的相邻数字都是应用了上述规则中的某一条。

  同时这些规则还有优先级的顺序之分,从表面上看,应该是数字 a 和 b 越大,规则越优先。但实际上并非如此,例如:

  从 75 到 80 ,应用的实际规则是 15->16 ,而不是 25->27 (这会产生从 75 变成 81,跳过了 80)。因此规则的优先级排序需要按照 a->b 的放大倍数进行从小到大排序。放大倍数(b / a)越小的规则,越优先。考虑到这个规则很多(实际有 76 条),而且涉及的数字很大,所以人工找出所有规则是不现实的。所以我使用一个程序(称之为代码生成器)来专门找出手游规则,并将其输出成一个函数的代码,函数的名称是 getnext,含义是根据当前的 humber number ,找出下一个 humber number。如下:

#include <vector>
#include <algorithm>
#include <iostream>
#include <stdio.h>
#include <string.h>

typedef struct tagnode
{
    int from;
    int to;
    double ratio; //= to / from;
} node;

//x1, x2 是否是已经排好序的。
bool issuccessive(node x1, node x2)
{
    return x1.ratio < x2.ratio;
}

void init(std::vector<int> &v1, int nsize)
{
    v1.reserve(nsize);
    v1.clear();
    v1.push_back(1);
    int nnumber = 2;
    int tmp;
    while(v1.size() < nsize)
    {
        tmp = nnumber;
        while((tmp % 2) == 0) tmp /= 2;
        while((tmp % 3) == 0) tmp /= 3;
        while((tmp % 5) == 0) tmp /= 5;
        while((tmp % 7) == 0) tmp /= 7;
        if(tmp == 1)
            v1.push_back(nnumber);
        ++nnumber;
    }
}

//x1, x2 是否是互质的(没有公共因子)
bool no_comm_factor(int x1, int x2)
{
    if(x1 % 2 == 0 && x2 % 2 == 0)
        return false;
    if(x1 % 3 == 0 && x2 % 3 == 0)
        return false;
    if(x1 % 5 == 0 && x2 % 5 == 0)
        return false;
    if(x1 % 7 == 0 && x2 % 7 == 0)
        return false;
    return true;
}

//give x, find k;
//x = 2^k[0] * 3^k[1] * 5^k[2] * 7^k[3];
void getk(int x, int k[4])
{
    memset(k, 0, sizeof(int) * 4);
    while((x & 1) == 0) 
    {
        x /= 2;
        k[0]++;          
    }
    while(x % 3 == 0)
    {
        x /= 3;
        k[1]++;
    }
    while(x % 5 == 0)
    {
        x /= 5;
        k[2]++;
    }
    while(x % 7 == 0)
    {
        x /= 7;
        k[3]++;
    }
}

int main(int argc, char* argv[])
{
    std::vector<int> v1;
    //计算出前 5842 个 humber number,这一步需要花比较长的时间。
    init(v1, 5842);

    //找出所有策略(即找出所有的相邻的互质的 humber number 对)。
    std::vector<node> nodes;
    for(int i = 5841; i > 0; --i)
    {
        if(no_comm_factor(v1[i - 1], v1[i]))
        {
            node item;
            item.from = v1[i - 1];
            item.to = v1[i];
            item.ratio = item.to * 1.0 / item.from;
            nodes.push_back(item);
        }
    }

    //按照放大倍数从小到大进行规则排序。
    std::sort(nodes.begin(), nodes.end(), issuccessive);

    int irule = 0;
    int k1[4], k2[4];
    char buf[1024], *pos;
    file *fp = fopen("getnextk_code.cpp", "w");
    fputs("void getnext(int* k)\n{\n", fp);
    typename std::vector<node>::const_iterator it;
    for(it = nodes.begin(); it != nodes.end(); ++it)
    {
        ++irule;

        getk(it->from, k1);
        getk(it->to,   k2);

        if(irule == 1) strcpy(buf, "\tif(");
        else if(irule == nodes.size()) strcpy(buf, "else");
        else strcpy(buf, "\telse if(");
        pos = buf + strlen(buf);

        if(k1[0]) 
        {
            sprintf(pos, "k[0] >= %d && ", k1[0]);
            pos += strlen(pos);
        }
        if(k1[1])
        {    
            sprintf(pos, "k[1] >= %d && ", k1[1]);
            pos += strlen(pos);
        }
        if(k1[2])
        {
            sprintf(pos, "k[2] >= %d && ", k1[2]);
            pos += strlen(pos);
        }
        if(k1[3])
        {
            sprintf(pos, "k[3] >= %d && ", k1[3]);
            pos += strlen(pos);
        }

        if(irule == nodes.size())
        {
            //最后一条规则
            sprintf(pos,  " //(rule %d) %d -> %d (%lf);\n\t{\n", 
                irule, it->from, it->to, it->ratio);
        }
        else
        {
            pos -= 4; //remove " && ";
            sprintf(pos, ") //(rule %d) %d -> %d (%lf);\n\t{\n", 
                irule, it->from, it->to, it->ratio);
        }
        pos += strlen(pos);

        //from
        if(k1[0])
        {
            sprintf(pos, "\t\tk[0] -= %d;\n", k1[0]);
            pos += strlen(pos);
        }
        if(k1[1])
        {
            sprintf(pos, "\t\tk[1] -= %d;\n", k1[1]);
            pos += strlen(pos);
        }
        if(k1[2])
        {
            sprintf(pos, "\t\tk[2] -= %d;\n", k1[2]);
            pos += strlen(pos);
        }
        if(k1[3])
        {
            sprintf(pos, "\t\tk[3] -= %d;\n", k1[3]);
            pos += strlen(pos);
        }

        //to
        if(k2[0])
        {
            sprintf(pos, "\t\tk[0] += %d;\n", k2[0]);
            pos += strlen(pos);
        }
        if(k2[1])
        {
            sprintf(pos, "\t\tk[1] += %d;\n", k2[1]);
            pos += strlen(pos);
        }
        if(k2[2])
        {
            sprintf(pos, "\t\tk[2] += %d;\n", k2[2]);
            pos += strlen(pos);
        }
        if(k2[3])
        {
            sprintf(pos, "\t\tk[3] += %d;\n", k2[3]);
            pos += strlen(pos);
        }
        strcpy(pos, "\t}\n");
        fputs(buf, fp);
        fflush(fp);
    }
    fputs("}\n", fp);
    fclose(fp);
    return 0;
}

  使用上面的代码生成器,我们就得到了所有的规则,就可以方便的真正的写用于提交的代码了。

  为了从数组 k 计算 humber number 的方便,这里我把 2, 3, 5, 7 的 n 次方提前计算好放到一个数组里,这样就能更快速的计算出 humber number。这样这个题目也就算基本完成了。但是这也只不过是完成了这个题目的一半而已,因此这个题目还有一半大坑在于输出格式中的 th 后缀!为此我 wa 了 2, 3 次以后才把规则写对。简单来说这里需要特别注意的就是:

  所有形如 xx11, xx12, xx13 后缀都是 th (而不仅仅是 11, 12, 13 ),除此以为的 xxx1 用 st,xxx2 用 nd,xxx3 用 rd,所有其他都用 th。例如,1011th, 1012th ,1023th,这里需要特别注意。

  最终提交代码如下:

// zoj1095_humblenumbers.cpp
//

#include <vector>
#include <iostream>

//选择出下一组 k 值,按照如下规则。
// x = (2^k[0]) * (3^k[1]) * (5^k[2]) * (7^k[3]);
void getnext(int* k);

int main(int argc, char* argv[])
{
    int i, x;
    int k[4] = { 0, 0, 0, 0 };
    int a2[31] = { 1 }; //a2[k] = 2^k;
    int a3[20] = { 1 }; //a3[k] = 3^k;
    int a5[14] = { 1 }; //a5[k] = 5^k;
    int a7[12] = { 1 }; //a7[k] = 7^k;
    for(i = 1; i < 31; i++)
    {
        a2[i] = a2[i - 1] * 2;
        if(i < 20) a3[i] = a3[i - 1] * 3;
        if(i < 14) a5[i] = a5[i - 1] * 5;
        if(i < 12) a7[i] = a7[i - 1] * 7;
    }
    std::vector<int> v1;
    v1.reserve(5842);
    v1.push_back(1);
    while(v1.size() < 5842)
    {
        getnext(k);
        x = a2[k[0]] * a3[k[1]] * a5[k[2]] * a7[k[3]];
        v1.push_back(x);
    }
    while(true)
    {
        std::cin >> i;
        if(i == 0) break;
        else if(i % 100 != 11 && i % 10 == 1)
            std::cout << "the " << i << "st humble number is " << v1[i - 1] << "." << std::endl;

        else if(i % 100 != 12 && i % 10 == 2)
            std::cout << "the " << i << "nd humble number is " << v1[i - 1] << "." << std::endl;
        
        else if(i % 100 != 13 && i % 10 == 3)
            std::cout << "the " << i << "rd humble number is " << v1[i - 1] << "." << std::endl;
        
        else
            std::cout << "the " << i << "th humble number is " << v1[i - 1] << "." << std::endl;
    }
    return 0;
}

//以下代码是从另一个程序生成的。
//根据当前的 humble number,选出下一个 humble number。
void getnext(int* k)
{
    if(k[1] >= 13 && k[3] >= 2) //(rule 1) 78121827 -> 78125000 (1.000041);
    {
        k[1] -= 13;
        k[3] -= 2;
        k[0] += 3;
        k[2] += 10;
    }
    else if(k[0] >= 4 && k[3] >= 9) //(rule 2) 645657712 -> 645700815 (1.000067);
    {
        k[0] -= 4;
        k[3] -= 9;
        k[1] += 17;
        k[2] += 1;
    }
    else if(k[0] >= 4 && k[2] >= 6) //(rule 3) 250000 -> 250047 (1.000188);
    {
        k[0] -= 4;
        k[2] -= 6;
        k[1] += 6;
        k[3] += 3;
    }
    else if(k[0] >= 1 && k[1] >= 7) //(rule 4) 4374 -> 4375 (1.000229);
    {
        k[0] -= 1;
        k[1] -= 7;
        k[2] += 4;
        k[3] += 1;
    }
    else if(k[0] >= 5 && k[3] >= 8) //(rule 5) 184473632 -> 184528125 (1.000295);
    {
        k[0] -= 5;
        k[3] -= 8;
        k[1] += 10;
        k[2] += 5;
    }
    else if(k[0] >= 5 && k[1] >= 1 && k[2] >= 2) //(rule 6) 2400 -> 2401 (1.000417);
    {
        k[0] -= 5;
        k[1] -= 1;
        k[2] -= 2;
        k[3] += 4;
    }
    else if(k[0] >= 9 && k[2] >= 1 && k[3] >= 5) //(rule 7) 43025920 -> 43046721 (1.000483);
    {
        k[0] -= 9;
        k[2] -= 1;
        k[3] -= 5;
        k[1] += 16;
    }
    else if(k[0] >= 6 && k[3] >= 7) //(rule 8) 52706752 -> 52734375 (1.000524);
    {
        k[0] -= 6;
        k[3] -= 7;
        k[1] += 3;
        k[2] += 9;
    }
    else if(k[0] >= 10 && k[3] >= 4) //(rule 9) 2458624 -> 2460375 (1.000712);
    {
        k[0] -= 10;
        k[3] -= 4;
        k[1] += 9;
        k[2] += 3;
    }
    else if(k[0] >= 7 && k[1] >= 4 && k[3] >= 6) //(rule 10) 1219784832 -> 1220703125 (1.000753);
    {
        k[0] -= 7;
        k[1] -= 4;
        k[3] -= 6;
        k[2] += 13;
    }
    else if(k[0] >= 14 && k[2] >= 3 && k[3] >= 1) //(rule 11) 14336000 -> 14348907 (1.000900);
    {
        k[0] -= 14;
        k[2] -= 3;
        k[3] -= 1;
        k[1] += 15;
    }
    else if(k[0] >= 11 && k[3] >= 3) //(rule 12) 702464 -> 703125 (1.000941);
    {
        k[0] -= 11;
        k[3] -= 3;
        k[1] += 2;
        k[2] += 7;
    }
    else if(k[0] >= 15) //(rule 13) 32768 -> 32805 (1.001129);
    {
        k[0] -= 15;
        k[1] += 8;
        k[2] += 1;
    }
    else if(k[0] >= 12 && k[1] >= 5 && k[3] >= 2) //(rule 14) 48771072 -> 48828125 (1.001170);
    {
        k[0] -= 12;
        k[1] -= 5;
        k[3] -= 2;
        k[2] += 11;
    }
    else if(k[2] >= 8 && k[3] >= 3) //(rule 15) 133984375 -> 134217728 (1.001742);
    {
        k[2] -= 8;
        k[3] -= 3;
        k[0] += 27;
    }
    else if(k[1] >= 7 && k[2] >= 4 && k[3] >= 2) //(rule 16) 66976875 -> 67108864 (1.001971);
    {
        k[1] -= 7;
        k[2] -= 4;
        k[3] -= 2;
        k[0] += 26;
    }
    else if(k[1] >= 1 && k[2] >= 10) //(rule 17) 29296875 -> 29360128 (1.002159);
    {
        k[1] -= 1;
        k[2] -= 10;
        k[0] += 22;
        k[3] += 1;
    }
    else if(k[1] >= 14 && k[3] >= 1) //(rule 18) 33480783 -> 33554432 (1.002200);
    {
        k[1] -= 14;
        k[3] -= 1;
        k[0] += 25;
    }
    else if(k[3] >= 10) //(rule 19) 282475249 -> 283115520 (1.002267);
    {
        k[3] -= 10;
        k[0] += 21;
        k[1] += 3;
        k[2] += 1;
    }
    else if(k[1] >= 8 && k[2] >= 6) //(rule 20) 102515625 -> 102760448 (1.002388);
    {
        k[1] -= 8;
        k[2] -= 6;
        k[0] += 21;
        k[3] += 2;
    }
    else if(k[1] >= 15 && k[2] >= 2) //(rule 21) 358722675 -> 359661568 (1.002617);
    {
        k[1] -= 15;
        k[2] -= 2;
        k[0] += 20;
        k[3] += 3;
    }
    else if(k[2] >= 1 && k[3] >= 6) //(rule 22) 588245 -> 589824 (1.002684);
    {
        k[2] -= 1;
        k[3] -= 6;
        k[0] += 16;
        k[1] += 2;
    }
    else if(k[2] >= 7 && k[3] >= 3) //(rule 23) 26796875 -> 26873856 (1.002873);
    {
        k[2] -= 7;
        k[3] -= 3;
        k[0] += 12;
        k[1] += 8;
    }
    else if(k[1] >= 5 && k[3] >= 5) //(rule 24) 4084101 -> 4096000 (1.002913);
    {
        k[1] -= 5;
        k[3] -= 5;
        k[0] += 15;
        k[2] += 3;
    }
    else if(k[2] >= 13) //(rule 25) 1220703125 -> 1224440064 (1.003061);
    {
        k[2] -= 13;
        k[0] += 8;
        k[1] += 14;
    }
    else if(k[2] >= 3 && k[3] >= 2) //(rule 26) 6125 -> 6144 (1.003102);
    {
        k[2] -= 3;
        k[3] -= 2;
        k[0] += 11;
        k[1] += 1;
    }
    else if(k[1] >= 12 && k[3] >= 4) //(rule 27) 1275989841 -> 1280000000 (1.003143);
    {
        k[1] -= 12;
        k[3] -= 4;
        k[0] += 14;
        k[2] += 7;
    }
    else if(k[2] >= 9) //(rule 28) 1953125 -> 1959552 (1.003291);
    {
        k[2] -= 9;
        k[0] += 7;
        k[1] += 7;
        k[3] += 1;
    }
    else if(k[1] >= 6 && k[3] >= 1) //(rule 29) 5103 -> 5120 (1.003331);
    {
        k[1] -= 6;
        k[3] -= 1;
        k[0] += 10;
        k[2] += 1;
    }
    else if(k[2] >= 5) //(rule 30) 3125 -> 3136 (1.003520);
    {
        k[2] -= 5;
        k[0] += 6;
        k[3] += 2;
    }
    else if(k[1] >= 13) //(rule 31) 1594323 -> 1600000 (1.003561);
    {
        k[1] -= 13;
        k[0] += 9;
        k[2] += 5;
    }
    else if(k[3] >= 9) //(rule 32) 40353607 -> 40500000 (1.003628);
    {
        k[3] -= 9;
        k[0] += 5;
        k[1] += 4;
        k[2] += 6;
    }
    else if(k[1] >= 7 && k[2] >= 1) //(rule 33) 10935 -> 10976 (1.003749);
    {
        k[1] -= 7;
        k[2] -= 1;
        k[0] += 5;
        k[3] += 3;
    }
    else if(k[3] >= 6) //(rule 34) 117649 -> 118098 (1.003816);
    {
        k[3] -= 6;
        k[0] += 1;
        k[1] += 10;
    }
    else if(k[3] >= 5) //(rule 35) 16807 -> 16875 (1.004046);
    {
        k[3] -= 5;
        k[1] += 3;
        k[2] += 4;
    }
    else if(k[0] >= 4 && k[2] >= 2 && k[3] >= 2) //(rule 36) 19600 -> 19683 (1.004235);
    {
        k[0] -= 4;
        k[2] -= 2;
        k[3] -= 2;
        k[1] += 9;
    }
    else if(k[0] >= 1 && k[1] >= 4 && k[3] >= 4) //(rule 37) 388962 -> 390625 (1.004275);
    {
        k[0] -= 1;
        k[1] -= 4;
        k[3] -= 4;
        k[2] += 8;
    }
    else if(k[0] >= 5 && k[3] >= 1) //(rule 38) 224 -> 225 (1.004464);
    {
        k[0] -= 5;
        k[3] -= 1;
        k[1] += 2;
        k[2] += 2;
    }
    else if(k[0] >= 9 && k[2] >= 4) //(rule 39) 320000 -> 321489 (1.004653);
    {
        k[0] -= 9;
        k[2] -= 4;
        k[1] += 8;
        k[3] += 2;
    }
    else if(k[0] >= 6 && k[1] >= 5) //(rule 40) 15552 -> 15625 (1.004694);
    {
        k[0] -= 6;
        k[1] -= 5;
        k[2] += 6;
    }
    else if(k[0] >= 10) //(rule 41) 1024 -> 1029 (1.004883);
    {
        k[0] -= 10;
        k[1] += 1;
        k[3] += 3;
    }
    else if(k[1] >= 5 && k[2] >= 2 && k[3] >= 3) //(rule 42) 2083725 -> 2097152 (1.006444);
    {
        k[1] -= 5;
        k[2] -= 2;
        k[3] -= 3;
        k[0] += 21;
    }
    else if(k[1] >= 6 && k[2] >= 4) //(rule 43) 455625 -> 458752 (1.006863);
    {
        k[1] -= 6;
        k[2] -= 4;
        k[0] += 16;
        k[3] += 1;
    }
    else if(k[2] >= 1 && k[3] >= 3) //(rule 44) 1715 -> 1728 (1.007580);
    {
        k[2] -= 1;
        k[3] -= 3;
        k[0] += 6;
        k[1] += 3;
    }
    else if(k[1] >= 4 && k[3] >= 2) //(rule 45) 3969 -> 4000 (1.007811);
    {
        k[1] -= 4;
        k[3] -= 2;
        k[0] += 5;
        k[2] += 3;
    }
    else if(k[2] >= 3) //(rule 46) 125 -> 126 (1.008000);
    {
        k[2] -= 3;
        k[0] += 1;
        k[1] += 2;
        k[3] += 1;
    }
    else if(k[1] >= 5) //(rule 47) 243 -> 245 (1.008230);
    {
        k[1] -= 5;
        k[2] += 1;
        k[3] += 2;
    }
    else if(k[1] >= 3 && k[3] >= 4) //(rule 48) 64827 -> 65536 (1.010937);
    {
        k[1] -= 3;
        k[3] -= 4;
        k[0] += 16;
    }
    else if(k[1] >= 4 && k[2] >= 2) //(rule 49) 2025 -> 2048 (1.011358);
    {
        k[1] -= 4;
        k[2] -= 2;
        k[0] += 11;
    }
    else if(k[3] >= 4) //(rule 50) 2401 -> 2430 (1.012078);
    {
        k[3] -= 4;
        k[0] += 1;
        k[1] += 5;
        k[2] += 1;
    }
    else if(k[1] >= 2 && k[3] >= 3) //(rule 51) 3087 -> 3125 (1.012310);
    {
        k[1] -= 2;
        k[3] -= 3;
        k[2] += 5;
    }
    else if(k[0] >= 4 && k[2] >= 1) //(rule 52) 80 -> 81 (1.012500);
    {
        k[0] -= 4;
        k[2] -= 1;
        k[1] += 4;
    }
    else if(k[0] >= 5 && k[1] >= 3) //(rule 53) 864 -> 875 (1.012731);
    {
        k[0] -= 5;
        k[1] -= 3;
        k[2] += 3;
        k[3] += 1;
    }
    else if(k[1] >= 2 && k[3] >= 1) //(rule 54) 63 -> 64 (1.015873);
    {
        k[1] -= 2;
        k[3] -= 1;
        k[0] += 6;
    }
    else if(k[1] >= 3 && k[2] >= 2) //(rule 55) 675 -> 686 (1.016296);
    {
        k[1] -= 3;
        k[2] -= 2;
        k[0] += 1;
        k[3] += 3;
    }
    else if(k[3] >= 2) //(rule 56) 49 -> 50 (1.020408);
    {
        k[3] -= 2;
        k[0] += 1;
        k[2] += 2;
    }
    else if(k[0] >= 4 && k[1] >= 1) //(rule 57) 48 -> 49 (1.020833);
    {
        k[0] -= 4;
        k[1] -= 1;
        k[3] += 2;
    }
    else if(k[0] >= 9) //(rule 58) 512 -> 525 (1.025391);
    {
        k[0] -= 9;
        k[1] += 1;
        k[2] += 2;
        k[3] += 1;
    }
    else if(k[2] >= 1 && k[3] >= 1) //(rule 59) 35 -> 36 (1.028571);
    {
        k[2] -= 1;
        k[3] -= 1;
        k[0] += 2;
        k[1] += 2;
    }
    else if(k[1] >= 3) //(rule 60) 27 -> 28 (1.037037);
    {
        k[1] -= 3;
        k[0] += 2;
        k[3] += 1;
    }
    else if(k[0] >= 3 && k[1] >= 1) //(rule 61) 24 -> 25 (1.041667);
    {
        k[0] -= 3;
        k[1] -= 1;
        k[2] += 2;
    }
    else if(k[0] >= 2 && k[2] >= 1) //(rule 62) 20 -> 21 (1.050000);
    {
        k[0] -= 2;
        k[2] -= 1;
        k[1] += 1;
        k[3] += 1;
    }
    else if(k[0] >= 7) //(rule 63) 128 -> 135 (1.054688);
    {
        k[0] -= 7;
        k[1] += 3;
        k[2] += 1;
    }
    else if(k[1] >= 1 && k[2] >= 1) //(rule 64) 15 -> 16 (1.066667);
    {
        k[1] -= 1;
        k[2] -= 1;
        k[0] += 4;
    }
    else if(k[0] >= 1 && k[3] >= 1) //(rule 65) 14 -> 15 (1.071429);
    {
        k[0] -= 1;
        k[3] -= 1;
        k[1] += 1;
        k[2] += 1;
    }
    else if(k[2] >= 2) //(rule 66) 25 -> 27 (1.080000);
    {
        k[2] -= 2;
        k[1] += 3;
    }
    else if(k[0] >= 5) //(rule 67) 32 -> 35 (1.093750);
    {
        k[0] -= 5;
        k[2] += 1;
        k[3] += 1;
    }
    else if(k[1] >= 2) //(rule 68) 9 -> 10 (1.111111);
    {
        k[1] -= 2;
        k[0] += 1;
        k[2] += 1;
    }
    else if(k[0] >= 3) //(rule 69) 8 -> 9 (1.125000);
    {
        k[0] -= 3;
        k[1] += 2;
    }
    else if(k[3] >= 1) //(rule 70) 7 -> 8 (1.142857);
    {
        k[3] -= 1;
        k[0] += 3;
    }
    else if(k[0] >= 1 && k[1] >= 1) //(rule 71) 6 -> 7 (1.166667);
    {
        k[0] -= 1;
        k[1] -= 1;
        k[3] += 1;
    }
    else if(k[2] >= 1) //(rule 72) 5 -> 6 (1.200000);
    {
        k[2] -= 1;
        k[0] += 1;
        k[1] += 1;
    }
    else if(k[0] >= 2) //(rule 73) 4 -> 5 (1.250000);
    {
        k[0] -= 2;
        k[2] += 1;
    }
    else if(k[1] >= 1) //(rule 74) 3 -> 4 (1.333333);
    {
        k[1] -= 1;
        k[0] += 2;
    }
    else if(k[0] >= 1) //(rule 75) 2 -> 3 (1.500000);
    {
        k[0] -= 1;
        k[1] += 1;
    }
    else //(rule 76) 1 -> 2 (2.000000);
    {
        k[0] += 1;
    }
}

  此外,当然我也想到,代码生成也可以这样,把提前计算好的 5842 个 humble number 依次放入 int 数组,或者一个全局变量数组,应该也是可行的,但这样的代码行数会变更多,显得非常的“暴力”,我没有去尝试这样做。