pandas数据集的端到端处理
程序员文章站
2023-10-19 08:36:41
1. 数据集基本信息
df = pd.read_csv()
df.head():前五行;
df.info():
rangeindex:行索引;
dat...
1. 数据集基本信息
df = pd.read_csv()
df.head():前五行;
df.info():
- rangeindex:行索引;
- data columns:列索引;
- dtypes:各个列的类型,
- 主体部分是各个列值的情况,比如可判断是否存在 nan 值;
对于非数值型的属性列
- df[‘some_categorical_columns'].value_counts():取值分布;
df.describe(): 各个列的基本统计信息
- count
- mean
- std
- min/max
- 25%, 50%, 75%:分位数
df.hist(bins=50, figsize=(20, 15)):统计直方图;
对 df 的每一列进行展示:
train_prices = pd.dataframe({'price': train_df.saleprice, 'log(price+1)': np.log1p(train_df.saleprice)}) # train_prices 共两列,一列列名为 price,一列列名为 log(price+1) train_prices.hist()
2. 数据集拆分
def split_train_test(data, test_ratio=.3): shuffled_indices = np.random.permutation(len(data)) test_size = int(len(data)*test_ratio) test_indices = shuffled_indices[:test_size] train_indices = shuffled_indices[test_size:] return data.iloc[train_indices], data.iloc[test_indices]
3. 数据预处理
- 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.categorical(df['label']).codes
- 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
- null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=false).head() # 填充为 mean 值 >> mean_cols = df.mean() >> df = df.fillna(mean_cols) >> df.isnull().sum().sum() 0
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接
上一篇: 解决Error:All flavors must now belong to a named flavor dimension. Learn more at https://d.android.com
推荐阅读
-
基于Qt的tcp客户端和服务器实现摄像头帧数据处理(客户端部分)
-
tts和字符集的关系--要求源和目的端的数据库字符集必须一样,国
-
pandas数据集的端到端处理
-
Ajax上传实现根据服务器端返回数据进行js处理的方法
-
pandas数据集的端到端处理
-
数据库端的分页处理
-
使用JSON格式提交数据到服务端的实例代码
-
基于Flink流处理的动态实时亿级用户全端数据统计分析系统(支持所有的终端统计) flink
-
基于Flink流处理的动态实时亿级用户全端数据统计分析系统(支持所有的终端统计) flink
-
PLSQL Developer 13 报错“数据库字符集(AL32UTF8)和客户端字符集(2%)是不同的。字符集转化可能会造成不可预期的后果“