欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

C++智能指针,指针容器原理及简单实现(auto_ptr,scoped_ptr,ptr_vector).

程序员文章站 2023-09-09 18:37:51
C++智能指针,指针容器原理及简单实现(auto_ptr,scoped_ptr,ptr_vector). [TOC] 前言 最近再写一个muduo的异步日志接触了很多智能指针,但是又不打算用boost库,只好模一个来用用了. 智能指针本身是一个对象,它在栈上创建,构造的时候分配堆上资源,析构的时候释 ......

目录

C++智能指针,指针容器原理及简单实现(auto_ptr,scoped_ptr,ptr_vector).


前言

最近再写一个muduo的异步日志接触了很多智能指针,但是又不打算用boost库,只好模一个来用用了.

智能指针的本质即用栈上对象来管理堆上数据的生命周期.

智能指针本身是一个对象,它在栈上创建,构造的时候分配堆上资源,析构的时候释放资源,这样就避免了堆上数据资源泄露的情况.
同时重载它的-> 和 * 运算符实现如同裸指针一样的操作.

下面看看几个局部智能指针对象的实现代码。

auto_ptr

auto_ptr特点: 实现拷贝构造函数, 重载 = 运算符, 实现->、* 运算符, 使它能够像普通指针一样 使用,
同时通过release() 和 reset() 方法实现安全的转移使用权 .

#ifndef _AUTO_PTR_HH
#define _AUTO_PTR_HH

template<typename T>
class auto_ptr{
public:
    explicit auto_ptr(T* p = 0):m_ptr(p){printf("1\n");
    }
    
    auto_ptr(auto_ptr& obj):m_ptr(obj.release()){printf("2\n");
    }
    
    auto_ptr& operator=(auto_ptr& obj){printf("3\n");
        reset(obj.release());
        return *this;
    }
    
    ~auto_ptr(){printf("4\n");
        delete m_ptr;
    }

    T* release(){
        T* tmp = m_ptr;
        m_ptr = 0;
        return tmp;
    }
    
    void reset(T* p){
        if(m_ptr != p)
            delete m_ptr;
        m_ptr = p;
    }
    
    T* get() const {
        return m_ptr;
    }
    
    T* operator->(){
        return get();
    }
    
    T& operator*(){
        return *get();
    }
    
private:
    T* m_ptr;
};

#endif

测试代码:

#include "ScopePtr.hh"
#include "auto_ptr.hh"
#include <stdio.h>

class NonCopyable
{
protected: //构造函数可以被派生类调用,但不能直接构造对象
    NonCopyable() {printf("Nocopy Constroctr\n");}
    ~NonCopyable() {printf("~Nocopy DeConstroctr\n");}
private:
    NonCopyable(const NonCopyable &);
    const NonCopyable &operator=(const NonCopyable &);
};


class Test// : private NonCopyable{
{public:
    Test(){printf("Constroctr\n");}
    ~Test(){printf("~DeConstroctr\n");}
};

int main(){
    
    //scoped_ptr<Test> st(new Test);
    
    auto_ptr<Test> ap1(new Test);
    auto_ptr<Test> ap2(new Test);

    auto_ptr<Test> ap3(ap2);
    
    ap2 = ap3;
    
    getchar();
    return 0;
}

Constroctr
1
Constroctr
1
2
3

4
4
~DeConstroctr
4
~DeConstroctr

scoped_ptr

这个是boost库里面的东西,它和auto_ptr正相反: 将拷贝构造和=重载 都配置为私有,已达到不允许转移拥有权的目的.

#ifndef _SCOPE_PTR_HH
#define _SCOPE_PTR_HH
//  scoped_ptr mimics a built-in pointer except that it guarantees deletion
//  of the object pointed to, either on destruction of the scoped_ptr or via
//  an explicit reset(). scoped_ptr is a simple solution for simple needs;
//  use shared_ptr or std::auto_ptr if your needs are more complex.

/*
scoped_ptr 是局部智能指针 不允许转让所有权。
*/
template <class T>
class scoped_ptr
{
public:
    scoped_ptr(T *p = 0) :m_ptr(p) {
    }
    
    ~scoped_ptr(){
        delete m_ptr;
    }
    
    T&operator*() const {
        return *m_ptr;
    }
    
    T*operator->() const {
        return m_ptr;
    }
    
    void reset(T *p)//拥有权不允许转让  但是可以让智能指针指向另一个空间  
    {
        if (p != m_ptr && m_ptr != 0)
            delete m_ptr;
        m_ptr = p;
    }

    T* get(){
        return m_ptr;
    }

private://将拷贝构造和赋值  以及判等判不等  都设置为私有方法
    //对象不再能调用,即不能拷贝构造和赋值  也就达到了不让转移拥有权的目的
    scoped_ptr(const scoped_ptr<T> &y);
    scoped_ptr<T> operator=(const scoped_ptr<T> &);
    void operator==(scoped_ptr<T> const &) const;
    void operator!=(scoped_ptr<T> const &) const;

    T* m_ptr;
};

#endif

ptr_vector

这个也是boost里面的东西,如果我们光放对象指针到vector里面,容器析构的时候虽然会析构自己开辟出来的存放指针的空间,但不会析构指针本身指向的空间,于是有了这个容器.

#ifndef _PTR_VECTOR_HH
#define _PTR_VECTOR_HH

#include "auto_ptr.hh"
#include <vector>

template<typename T>
class ptr_vector : public std::vector<T*>{
public:
    ~ptr_vector(){
        clear();
    }

    void clear(){
        typename std::vector<T*>::iterator it;
        for(it = std::vector<T*>::begin(); it != std::vector<T*>::end(); ++it){
            delete *it;//释放指针指向的内存.
        }
        
        /*
        for(size_t i = 0; i < std::vector<T*>::size(); ++i){
            delete std::vector<T*>::back();
        }*/
        
        std::vector<T*>::clear(); //释放指针本身.
    }

    typename std::vector<T*>::iterator erase(typename std::vector<T*>::iterator it){
        if(it >= std::vector<T*>::begin() && it < std::vector<T*>::end()){
            delete *it;
            std::vector<T*>::erase(it);
        }
    }

    void pop_back(){
        if(std::vector<T*>::size() > 0){
            delete std::vector<T*>::back();
            std::vector<T*>::pop_back();
        }
    }
    
    void push_back(T* const &v){
        auto_ptr<T> ap(v);
        std::vector<T*>::push_back(v);
        ap.release();
    }

    void push_back(auto_ptr<T> &v){
        std::vector<T*>::push_back(v.get());
        v.release();
    }
    
};

#endif

测试代码:

class Test// : private NonCopyable{
{public:
    Test(int a = 99):a(a){printf("Constroctr\n");}
    ~Test(){printf("~DeConstroctr\n");}
    int get(){return a;}
private:
    int a;
};

int main(){
    auto_ptr<Test> ap1(new Test(0));
    auto_ptr<Test> ap2(new Test(1));
    auto_ptr<Test> ap3(new Test(2));

    printf("%d\n", ap1->get());
    
    ptr_vector<Test> apv;
    apv.push_back(ap1);
    apv.push_back(ap2);
    apv.push_back(ap3);
    printf("%d %lu \n", apv.front()->get(),apv.size());
/*
    apv.pop_back();
    printf("%lu\n", apv.size());

    apv.pop_back();
    printf("%lu\n", apv.size());
    
    apv.pop_back();
    printf("%lu\n", apv.size());
*/
    apv.pop_back();
    printf("%lu\n", apv.size());
    
    
    ptr_vector<Test>::iterator it = apv.begin();
    apv.erase(it);
    printf("%lu\n", apv.size());

    
    getchar();
    
    
    
    return 0;
}

Constroctr
Constroctr
Constroctr
0
0 3 
~DeConstroctr
2
~DeConstroctr
1

~DeConstroctr

本文主介绍了智能指针的本质,及两种简单的智能指针实现与一个指针容器的实现.

事实上现在auto_ptr用的不多,如果没对原来传进来的指针进行处理,转移后,原来的指针为空了,如果有人去使用既会造成问题。
vector也存在很多问题,pop_back()一个空的容器,vector里面照样会做--size,这时候容器大小从0就变成了无限大,后果无法预料,.本例中对这种情况进行了处理. pop_back()一个空的vector将什么都不做. 但是vector用法还是有讲究的,不然容易造成问题.