Python OpenCV处理图像之图像直方图和反向投影
程序员文章站
2023-09-04 10:55:42
本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下
当我们想比较两张图片相似度的时候,可以使用这一节提到的技术...
本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下
当我们想比较两张图片相似度的时候,可以使用这一节提到的技术
关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:
0x01. 绘制直方图
import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value hpt = 0.9 * histsize for i in range(size): intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image cv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the line i += 1 #---- Gray image orig = cv.LoadImage("img/lena.jpg", cv.CV_8U) histsize = 256 #Because we are working on grayscale pictures which values within 0-255 hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(hist.bins, histImg, histsize) cv.ShowImage("Original Image", orig) cv.ShowImage("Original Histogram", histImg) #--------------------- #---- Equalized image imEq = cv.CloneImage(orig) cv.EqualizeHist(imEq, imEq) #Equlize the original image histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(histEq.bins, eqImg, histsize) cv.ShowImage("Image Equalized", imEq) cv.ShowImage("Equalized HIstogram", eqImg) #-------------------------------- cv.WaitKey(0)
0x02. 反向投影
import cv2.cv as cv im = cv.LoadImage("img/lena.jpg", cv.CV_8U) cv.SetImageROI(im, (1, 1,30,30)) histsize = 256 #Because we are working on grayscale pictures hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([im], hist) cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor _,max_value,_,_ = cv.GetMinMaxHistValue(hist) if max_value == 0: max_value = 1.0 cv.NormalizeHist(hist,256/max_value) cv.ResetImageROI(im) res = cv.CreateMat(im.height, im.width, cv.CV_8U) cv.CalcBackProject([im], res, hist) cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED) cv.ShowImage("Original Image", im) cv.ShowImage("BackProjected", res) cv.WaitKey(0)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: 2013年CIO需要知道的八句格言
下一篇: NumPy 数学函数及代数运算的实现代码
推荐阅读
-
Python OpenCV处理图像之滤镜和图像运算
-
Python OpenCV处理图像之图像像素点操作
-
Python OpenCV处理图像之图像直方图和反向投影
-
Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术
-
opencv python简易文档之图像处理算法
-
Python编程OpenCV和Numpy图像处理库实现图片去水印
-
Python+OpenCV图像处理之直方图统计
-
Python+OpenCV数字图像处理之ROI区域的提取
-
Python OpenCV处理图像之滤镜和图像运算
-
Python OpenCV处理图像之图像直方图和反向投影