欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python对离散变量的one-hot编码方法

程序员文章站 2023-09-04 10:55:54
我们在进行建模时,变量中经常会有一些变量为离散型变量,例如性别。这些变量我们一般无法直接放到模型中去训练模型。因此在使用之前,我们往往会对此类变量进行处理。一般是对离散变量...

我们在进行建模时,变量中经常会有一些变量为离散型变量,例如性别。这些变量我们一般无法直接放到模型中去训练模型。因此在使用之前,我们往往会对此类变量进行处理。一般是对离散变量进行one-hot编码。下面具体介绍通过python对离散变量进行one-hot的方法。

注意:这里提供两种哑编码的实现方法,pandas和sklearn。它们最大的区别是,pandas默认只处理字符串类别变量,sklearn默认只处理数值型类别变量(需要先 LabelEncoder )

① pd.get_dummies(prefix=)

pandas的get_dummies()可以直接对变量进行one-hot编码,其中prefix是为one-hot编码后的变量进行命名。

②LabelEncoder和OneHotEncoder

我们也可以通过sklearn的模块实现对离散变量的one-hot编码,其中LabelEncoder是将离散变量替换为数字,

OneHotEncoder则实现对替换为数字的离散变量进行one-hot编码。

注:get_dummies()可以直接对字符型变量进行one-hot编码,但OneHotEncoder不能直接对字符型变量编码,因此我们需要先将字符型变量转换为数值型变量。这就是为什么在OneHotEncoder之前需要LabelEncoder的原因。

下面我们通过实例来介绍这两种方法的具体使用:

①数据的导入

import pandas as pd
import os
os.getcwd() 
os.chdir('E:\study\kaggle\Titanic')
from sklearn.preprocessing import OneHotEncoder 
from sklearn.preprocessing import LabelEncoder 
data = pd.read_csv('train.csv')

②数据熟悉

data['Sex'].value_counts()
Out[38]: 
male  577
female 314
Name: Sex, dtype: int64 #可以看到,变量Sex为字符型变量,取值有male和female两种

③get_dummies

Sex_ohe_1 = pd.get_dummies(data['Sex'])
Sex_ohe_1.head()
Out[40]: 
 female male
0  0  1
1  1  0
2  1  0
3  1  0
4  0  1

④OneHotEncoder

Sex_ohe_2 = OneHotEncoder(sparse=False).fit_transform(data['Sex'].reshape((-1,1))) 
 
ValueError: could not convert string to float: male 

可以看到OneHotEncoder无法直接对字符型变量进行编码,需要通过OneHotEncoder将字符型变量转换为数值型变量。

le_sex=LabelEncoder().fit(data['Sex']) 
Sex_label=le_sex.transform(data['Sex']) 
Sex_label= LabelEncoder().fit_transform(data['Sex']) #fit_transform等价于fit和transform两个函数结合
ohe_sex=OneHotEncoder(sparse=False).fit(Sex_label.reshape(-1,1)) 
Sex_ohe=ohe_sex.transform(Sex_label.reshape(-1,1)) 
Sex_ohe_3 = OneHotEncoder(sparse=False).fit_transform(Sex_label.reshape((-1,1)))

注:get_dummies返回的为数据框,OneHotEncoder返回的为数组。

以上这篇python对离散变量的one-hot编码方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。